Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a+b}{2007}=\frac{b+c}{2008}=\frac{a+b-\left(b+c\right)}{2007-2008}=\frac{a-c}{-1}\)(1)
\(\frac{b+c}{2008}=\frac{c+a}{2009}=\frac{b+c-\left(c+a\right)}{2008-2009}=\frac{b-a}{-1}\)(2)
\(\frac{c+a}{2009}=\frac{a+b}{2007}=\frac{c+a-\left(a+b\right)}{2009-2007}=\frac{c-b}{2}\)(3)
Từ (1), (2), (3) =>\(\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{c-b}{2}\)
=> \(a-c=b-a=\frac{c-b}{2}\)
=>\(c-b=2\left(a-c\right)\)
Có: \(4\left(a-c\right)\left(b-a\right)=4\left(a-c\right)\left(a-c\right)\)
(do \(a-c=b-a\)) (*)
Có \( \left(c-b\right)^2=2\left(a-c\right).2\left(a-c\right)\)
=\(4.\left(a-c\right)\left(a-c\right)\) (**)
Từ (*) và (**) =>\(4.\left(a-c\right)\left(b-a\right)=\left(c-b\right)^2\)(đpcm)

a=2009,b=2010,c=2011
M=4(2009-2010)(2010-2011)=(2009-2011)^2=4
Đặt \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}=k\)
=>a=2009k;b=2010k;c=2011k
Xét \(4\left(a-b\right)\left(b-c\right)=4\left(2009k-2010k\right)\left(2010k-2011k\right)\)
\(=4\left(-k\right)\left(-k\right)=4k^2\left(1\right)\)
Xét \(\left(c-a\right)^2=\left(2011k-2009k\right)^2=\left(2k\right)^2=4k^2\left(2\right)\)
Từ (1) và (2)
=>4(a-b)(b-c)=(c-a)2=4k2
Hay M=4k2

\(a:b:c=b:c:a\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\left(a+b+c\ne0\right)\)
=>a=b=c
=>(2a+9b+1945c)2009=(2a+9a+1945a)2009=(1956a)2009=19562009.a2009
19562009.a30.b4.c1975=19562009.a30.a4.a1975
=19562009.a2009
=> (2a + 9b + 1945c)2009 = 19562009.a30.b4.c1975
=>đpcm
a : b : c = b : c : a => \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\). Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) => a = b = c
Ta có:VT = (2a + 9b+ 1945c)2009 = (2a+ 9a+ 1945a)2009 = 19520096a2009
VP = 19562009.a30.b4.c1975 = 19562009.a30.a4.a1975 = 19562009a2009
=> đpcm

Ta có: \(2A=2.\left(2^0+2^1+2^2+2^3+......+2^{2011}\right)\) \(=2^1+2^2+2^3+2^4+.....+2^{2011}+2^{2012}\)
=> \(2A-A=\left(2^1+2^2+2^3+....+2^{2011}+2^{2012}\right)\) => \(A=2^{2012}-1\) Ta có : A = 22012 - 1 và B = 22012 => A và B là hai số nguyên liên tiếp

Đặt \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}=k\left(k\ne0\right)\)
\(\Rightarrow a=2009k;b=2010k;c=2011k\)
\(\Rightarrow M=4\left(2009k-2010k\right)\left(2010k-2011l\right)-\left(2011k-2009k\right)^2\)\(\Rightarrow M=4\left(-k\right)\left(-k\right)-\left(2k\right)^2\)
\(\Rightarrow M=4k^2-4k^2=0\)
Vậy M=0
Đặt \(\frac{a}{2007}=\frac{b}{2009}=\frac{c}{2011}=\)k (k\(\in N\)*)
=> a = 2007k ; b = 2009k ; c=2011k
Khi đó ta có :
\(\frac{\left(a-c\right)^{^2}}{4}=\frac{\left(2007k-2011k\right)^{^2}}{4}=\frac{\left(2007k\right)^{^2}-2.2007k.2011k+\left(2011k\right)^{^2}}{4}=\frac{16k^{^2}}{4}=4k^{^2}\)(1) <Nghe mùi toán 8 : ) >
\(\left(a-b\right)\left(b-c\right)=\left(2007k-2009k\right)\left(2009k-2011k\right)=-2k.\left(-2k\right)=4k^{^2}\)(2)
Từ (1) và (2) => ĐPCM
Học tốt#Gấu