![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Với x = 24
=> x + 1 = 24 (1)
Thay (1) vào A ta được:
\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(A=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+x+1\)
\(A=1\)
b) Với x = 31
=> x - 1 = 30 (1)
Thay (1) vào B ta được
\(B=x^3-\left(x-1\right)x^2-\left(x-1\right)x+1\)
\(B=x^3-x^3+x^2-x^2+x+1\)
\(B=x+1\)
\(B=31+1=32\)
c) Với x = 14
=> x + 1 = 15
x + 2 = 16
2x + 1 = 29
x - 1 = 13
Thay tất cả biểu thức trên vào C ta được
\(C=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(C=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(C=-x\)
\(C=-14\)
d) Ta có:
\(\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)
\(\Rightarrow\left(-2+x^2\right)^5=1\)
\(\Rightarrow-2+x^2=1\)
\(\Rightarrow x^2=1+2=3\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\=-\sqrt{3}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{30x^3}{11y^2}.\frac{121y^5}{25x}=\frac{6x^2.11y^3}{5}=\frac{66x^2y^3}{5}\)
b) \(\frac{x+3}{x^2-4}.\frac{8-12x+6x^2-x^3}{9x+27}=\frac{x+3}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)^3}{9\left(x+3\right)}\)
\(=\frac{-\left(x-2\right)^2}{9\left(x+2\right)}\)
p/s: chúc bạn học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+3x-18=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}}\)
\(8x^2+30x+7=0\)
\(\Leftrightarrow\left(x+\frac{1}{4}\right)\left(x+\frac{7}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=0\\x+\frac{7}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=-\frac{7}{2}\end{cases}}}\)
\(x^3-11x^2+30x=0\)
\(\Leftrightarrow x\left(x-6\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}}\)hoặc \(x=0\)
\(x^2+3x-18=x^2-3x+6x-18=x\left(x-3\right)+6\left(x-3\right)=\left(x-2\right)\left(x+6\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3-11x^2+30x=0\)
\(\left(x-6\right).\left(x-5\right).x=0\)
\(=>\orbr{\begin{cases}x-6=0\\x-5=0,x=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=6\\x=5,x=0\end{cases}}\)
P/S: mk mới lớp 7 sai sót mong bỏ qua
\(8x^2+30x+7=0\)
\(8x^2+28x+2x+7=0\)
\(2x.\left(4x+1\right)+7.\left(4x+1\right)=0\)
\(\left(2x+7\right).\left(4x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=-7\\4x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)
vậy ....
P/S sorry mk làm hơi lâu :)__chờ tí làm câu a cho
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta có: \(25x+2y^2-10\sqrt{x}y-10\sqrt{x}+2=0\)
\(\Leftrightarrow [(5\sqrt{x})^2+y^2-10\sqrt{x}y]+y^2-10\sqrt{x}+2=0\)
\(\Leftrightarrow (5\sqrt{x}-y)^2+y^2-10\sqrt{x}+2=0\)
\(\Leftrightarrow (5\sqrt{x}-y)^2-2(5\sqrt{x}-y)+1-2y+y^2+1=0\)
\(\Leftrightarrow (5\sqrt{x}-y-1)^2+(y-1)^2=0\)
Do đó: \(\left\{\begin{matrix} 5\sqrt{x}-y-1=0\\ y-1=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=1\\ x=\frac{4}{25}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(-25x^2+30x-100\)
\(=-\left(25x^2-30x+100\right)\)
\(=-\left(25x^2-30x+9+91\right)\)
\(=-\left\{\left(5x-3\right)^2+91\right\}\)
\(=-\left(5x+3\right)^2-91< 0\forall x\)
học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
b) 8x2 + 30x + 7 = 0
8x2 + 16x + 14x + 7 = 0
8x.(x+2) + 7.(x+2) = 0
(x+2).(8x+7) = 0
..
bn tự làm tiếp nhé! ^-^
c) x3 - 11x2 + 30x = 0
x.(x2 - 11x +30) = 0
\(x.\left(x^2-5x-6x+30\right)=0.\)
x.[ x.(x-5) - 6.(x-5) ] = 0
x.(x-5).(x-6) = 0
...
\(\sqrt{25x^2-30x+9}=x+7\) (ĐK: \(x\ge-7\))
\(\Leftrightarrow\sqrt{\left(5x-3\right)^2}=x+7\)
\(\Leftrightarrow\left|5x-3\right|=x+7\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=x+7\\5x-3=-x-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(n\right)\\x=-\dfrac{2}{3}\left(n\right)\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{5}{2};-\dfrac{2}{3}\right\}\)
\(\sqrt{25x^2-30x+9}=x+7\left(x\ge-7\right)\)
\(\Rightarrow\sqrt{\left(5x+3\right)^2}=x+7\)
\(\Rightarrow\left|5x+3\right|=x+7\)
Xét trường hợp \(x\ge-\dfrac{5}{3}\) và \(x< \dfrac{5}{3}\) nha