K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

a) Thay x = 5 vào thì phương trình trở thành \(5^2-5.5+b=0\)

\(\Rightarrow25-25+b=0\Rightarrow b=0\)

Lúc đó phương trình trở thành \(x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

Dễ dàng suy ra nghiệm còn lại của phương trình là 0

b) Thay x = 3 vào thì phương trình trở thành \(3^2+3b-15=0\)

\(\Rightarrow3b-6=0\Leftrightarrow b=2\)

Lúc đó phương trình trở thành \(x^2+2x-15=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

Dễ dàng suy ra nghiệm còn lại của phương trình là -5

4 tháng 3 2020

a) Vì \(x=5\)là 1 nghiệm của phương trình

\(\Rightarrow\)Thay \(x=5\)vào phương trình ta được:

\(5^2-5.5+b=0\)\(\Leftrightarrow25-25+b=0\)\(\Leftrightarrow b=0\)

Thay \(b=0\)vào phương trình ta được:

\(x^2-5x=0\)\(\Leftrightarrow x\left(x-5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

Vậy \(b=0\)và nghiệm thứ 2 của phương trình là \(x=0\)

b) Vì \(x=3\)là 1 nghiệm của phương trình

\(\Rightarrow\)Thay \(x=3\)vào phương trình ta được:

\(3^2+3b-15=0\)\(\Leftrightarrow9+3b-15=0\)

\(\Leftrightarrow3x-6=0\)\(\Leftrightarrow3b=6\)\(\Leftrightarrow b=2\)

Thay \(b=2\)vào phương trình ta được:

\(x^2+2x-15=0\)\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)

Vậy \(b=2\)và nghiệm thứ 2 của phương trình là \(x=-5\)

2 tháng 10 2018

Từ a+b=c Ta được a+b-c=0

Do đó:\(\left(a+b-c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=0\)(đccm)

2 tháng 10 2018

Có thể ( chỉ là có thể thôi ) các bạn chưa học hằng đẳng thức nâng cao nên mình sẽ chứng minh và dùng nó luôn , còn các bạn cứ lấy nó mà dung , bởi vì nó cũng có thể được coi là " định lý ", đại loại thế

Bổ đề : CMR: \(\left(a+b-c\right)^2=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

\(\left(a+b-c\right)\left(a+b-c\right)=a^2+ab-ac+ab+b^2-bc-ac-bc+c^2\)

\(=a^2+b^2+c^2+\left(ab+ab\right)-\left(ac+ac\right)-\left(bc+bc\right)\)

\(=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

Nhờ bổ đề trên\(\Rightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=a^2+b^2+c^2+2ab-2ac-2bc=\left(a+b-c\right)^2=0\)

\(\Rightarrow\)\(a+b-c=0\)vì \(\left(a+b-c\right)\ge0\)

\(\Rightarrow\)\(a+b=c\left(DPCM\right)\)

Còn nhiều hằng đẳng thức nâng cao nữa cũng kiểu dạng này, nếu bạn muốn biết thì hãy tự chứng minh nó và áp dụng nó vào bài như một bổ đề, mình chỉ chia sẽ kinh nghiệm vậy thôi

GOOD LUCK

Bài 1: Giải các phương trình và bất phương trình sau: a) \(x^2-x=0\) b)\(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x^2+5}{x\left(x-5\right)}\) c)\(2x\left(x-3\right)-x\left(2x+1\right)>5-x\) Bài 2: Giải bài toán sau bằng cách lập phương trình: Một mảnh đất hình chữ nhật có chu vi là 56m. Nếu tăng chiều dài thêm 4m đồng thời giảm chiều rộng đi 2m thì được mảnh đất hình chữ...
Đọc tiếp

Bài 1: Giải các phương trình và bất phương trình sau:

a) \(x^2-x=0\) b)\(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x^2+5}{x\left(x-5\right)}\) c)\(2x\left(x-3\right)-x\left(2x+1\right)>5-x\)

Bài 2: Giải bài toán sau bằng cách lập phương trình:

Một mảnh đất hình chữ nhật có chu vi là 56m. Nếu tăng chiều dài thêm 4m đồng thời giảm chiều rộng đi 2m thì được mảnh đất hình chữ nhật mới có diện tích nhỏ hơn diện tích mảnh đất ban đầu là 4m2. Hãy tính chiều dài, chiều rộng mảnh đất ban đầu.

Bài 3: Cho tam giác ABC (AB<AC) có ba góc nhọn, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh: △AFH ∼ △ADB.

b) Chứng minh: BH.HE = CH.HF.

c) Gọi I là trung điểm của BC, kẻ đường thẳng qua H vuông góc với HI, đường thẳng này cắt đường thẳng AB tại M và cắt đường thẳng AC tại N. Chứng minh: MH = HN

Bài 4: Cho các số thực a, b thỏa mãn a3 + b3 = 2. Chứng minh rằng a + b ≤ 2

(Bài 4 không làm được thì không sao vì đó là bài nâng cao)

0
9 tháng 4 2017

= z% 43 sa

13 tháng 8 2016

Bài 1 A=xyz+xz-zy-z+xy+x-y-1

thay các gtri x=-9, y=-21 và z=-31 vào là đc

=> A=-7680

Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

b) 49n+77n-29n-1

=\(49^n-1+77^n-29^n\)

=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)

=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))

=> tích trên chia hết 48

c) 35x-14y+29-1=7(5x-2y)+7.73

=7(5x-2y+73) tích trên chia hết cho 7

=. ĐPCM

12 tháng 3 2023

Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z

=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)

=�+��+1��+�+1=xy+x+1x+xy+1

=1=1

12 tháng 3 2018

Ta có : \(x^2+2012x+2011^{2011}-1=0\)

\(\Leftrightarrow x^2+2012x+1006^2=2011^{2011}+1+1006^2\)

\(\Rightarrow\left(x+1006\right)^2=2011^{2011}+1+1006^2\)

Giả sử x là một số nguyên thì VT là một số chính phương.

Khi đó VP cũng là số chính phương.

Lại có 20112011 có tận cùng là chữ số 1, 10062 có tận cùng là chữ số 6 nên VP có tận cùng là chữ số 8.

Lại có không một số chính phương nào có tận cùng là chữ số 8 hay VP không là số chính phương.

Vậy giả sử sai hay không tồn tại số nguyên x thỏa mãn phương trình trên.