K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

đề bài 1 là j

22 tháng 7 2016

tính tổng

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

a/

$A-3=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}-3$

$=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})-3$

$=\frac{2}{2003}-\frac{1}{2004}-\frac{1}{2005}$

$=(\frac{1}{2003}-\frac{1}{2004})+(\frac{1}{2003}-\frac{1}{2005})$

$>0+0=0$

$\Rightarrow A>3$

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

b/

$B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}$

$=1-\frac{1}{2015}<1$

ta có:

\(a=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

\(a=\frac{1}{4}+\frac{1}{9}+...+\frac{1}{9801}+\frac{1}{10000}\)

\(a=\left(\frac{1}{4}+\frac{1}{10000}\right)+\left(\frac{1}{9}+\frac{1}{9801}\right).\left(10000-4:\left(9-4\right)\right)\)

a=\(\frac{1}{10004}.498=\frac{249}{5002}\)

vì:\(\frac{249}{5002}< \frac{3}{4}=>a< \frac{3}{4}\)

24 tháng 11 2016

a)tính dễ

b)chứng minh nó = quy nạp thôi

n=1 và n=k; n=k+1;... trong trang cá nhân mk lm r` đó bn chịu khó tìm lại

23 tháng 4 2019

\(A=\left[\frac{1}{2^2}-1\right]\left[\frac{1}{3^2}-1\right]\left[\frac{1}{4^2}-1\right]\cdot...\cdot\left[\frac{1}{100^2}-1\right]\)

\(=\frac{-3}{2^2}\cdot\frac{-8}{3^2}\cdot\frac{-15}{4^2}\cdot...\cdot\frac{-9999}{100^2}\)

\(=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot\frac{-3\cdot5}{4\cdot4}\cdot...\cdot\frac{-99\cdot101}{100\cdot100}\)

\(=\frac{-1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot...\cdot100}\cdot\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot...\cdot100}\)

\(=-\frac{1}{100}\cdot\frac{101}{2}=-\frac{101}{200}\)

Mà \(-\frac{101}{200}< -\frac{1}{2}\)

nên \(A< -\frac{1}{2}\)

23 tháng 4 2019

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{10000}-1\right)\)

\(A=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}...\frac{-9999}{10000}\)

\(A=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.\frac{-3.5}{4.4}...\frac{-99.101}{100.100}\)

\(A=\frac{\left(-1\right)\left(-2\right)\left(-3\right)...\left(-99\right)}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\)

\(A=-\frac{1}{100}.\frac{101}{2}\)

\(A=-\frac{101}{200}\)

\(\text{Vậy A=}-\frac{101}{200}\)

3 tháng 6 2016

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=2-\frac{1}{100}< 2\)

Vậy \(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 2\)

=>A<2(đpcm)

3 tháng 6 2016

Ta có: A = 1 + 1/22+1/32+1/4^2+...+1/100^2 < 1+1/1.2 +1/2.3+1/3.4+...+1/99.100

     => A < 1+(1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100)

          A < 1+(1-1/100)

          A < 1+99/100

Vì 1+99/100  < 2 nên A < 2

11 tháng 9 2015

\(3^{21}=3.3^{20}=3.\left(3^2\right)^{10}=3.9^{10}\)

\(2^{31}=2.2^{30}=2.\left(2^3\right)^{10}=2.8^{10}\)

Thấy: 3 > 2 và 910 > 810

Nên \(3^{21}>2^{31}\)

Bài 2:

\(A=1+2+2^2+.....+2^{100}\)

\(2A=2+2^2+.......+2^{101}\)

\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+......+2^{101}-1\)

Vậy A = 2101 - 1