Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
b) Ta có: \(2^{31}=\left(2\frac{31}{21}\right)^{21}=2,7822^{21}< 3^{21}\Rightarrow2^{31}< 3^{21}\)
c) Ta có: \(3^{30}=\left(3^3\right)^{10}=27^{10}\)
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
Lại có: \(3.24^{10}=2.24^{10}+24^{10}\Rightarrow24^{10}< 27^{10}\left(1\right)\)
\(2.24^{10}< 48^{10}< 64^{10}\left(2\right)\)
Từ 1,2 => \(24^{10}+2.24^{10}< 27^{10}+64^{10}\Rightarrow3.24^{10}< 8^{10}+27^{10}+64^{10}\)
\(\Rightarrow3.24^{10}< 3^{30}+2^{30}+4^{30}\)

Câu a:
2\(^{300}\) và 3\(^{200}\)
2\(^{300}\) = (2\(^3\))\(^{100}\) = 8\(^{100}\)
3\(^{200}\) = (3\(^2\))\(^{100}\) = 9\(^{100}\)
8\(^{100}\) < 9\(^{100}\)
Vậy 2\(^{300}\) < 3\(^{200}\)
câu b:
99\(^{20}\) và 9999\(^{10}\)
99\(^{20}\) = (99\(^2\))\(^{10}\) = 9801\(^{10}\)
9999\(^{10}\) > 9801\(^{10}\)
Vậy 99\(^{20}\) < 9999\(^{10}\)
Câu c:
3\(^{500}\) và \(7^{300}\)
3\(^{500}\) = (3\(^5\))\(^{100}\) = 243\(^{100}\)
7\(^{300}\) = (7\(^3\))\(^{100}\) = 343\(^{100}\)
243\(^{100}\) < 343\(^{100}\)
Vậy 3\(^{500}\) < 7\(^{300}\)
Câu d:
11\(^{1979}\) và 37\(^{1320}\)
11\(^{1979}\) < 11\(^{1980}\) = (11\(^3\))\(^{660}\) = 1331\(^{660}\)
37\(^{1320}\) = (37\(^2\))\(^{660}\) = 1369\(^{660}\)
1331\(^{660}<1369^{660}\)
Vậy 11\(^{1979}\) < 37\(^{1320}\)

\(2^{91}=\left(2^{13}\right)^7=73728^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\) nhỏ hơn \(73728^7\)
\(\Rightarrow2^{91}\) lớn hơn \(5^{35}\)
\(b,3^{400}=\left(3^4\right)^{100}=81^{100}\\ 4^{300}=\left(4^3\right)^{100}=64^{100}\\ Vì:81^{100}>64^{100}\left(Do:81>64\right)\\ \Rightarrow3^{400}>4^{300}\)

`a)2^{300}=(2^3)^100=8^100`
`3^200=(3^2)^100=9^100`
Vì `9^100>8^100`
`=>2^300<3^200`
`b)3xx24^10`
`=3.(3.8)^10`
`=3^{11}.8^10`
`=3^{11}.2^30`
`2^300=2^{30}.2^{270}`
`=2^{30}.8^{90}`
Vì `3^11<8^90`
`=>3^{11}.2^30<8^{90}.2^30=2^300`
`=>3xx24^{10}<2^300+3^20+4^30`

a) \(2^{24}< 3^{16}\)
b) \(3^{34}>5^{20}\)
c) \(\left(3\cdot24\right)^{100}< 3^{300}+4^{300}\)
d) \(199^{20}>200^{15}\)
a, 2^24 > 3^16
b, 5^300>3 ^500
c,99^20 > 9999^10
d, 2^30 +3^44 +4^30 < 3x24^10