Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình biết làm nhưng bạn nên viết rời ra.Viết liền làm người khác không muốn làm đó.
Làm thì dài quá nên mình gợi ý thôi nhé
a)quy đồng
b)Sử dụng phần bù
c)(1/80)^7>(1/81)^7=(1/3^4)^7=1/3^28
(1/243)^6=(1/3^5)^6=1/3^30
Vì 1/3^28>1/3^30 nên ......
d)Tương tự câu d
Mấy câu còn lại thì nhắn tin với mình,mình sẽ trả lời cho,mình đang mệt lắm rồi nha!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.........\frac{2499}{2500}\)
\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}......\frac{49.51}{50^2}\)
\(=\frac{2.3.4....49}{3.4.5....50}.\frac{4.5.6....51}{3.4.5....50}\)
\(=\frac{1}{25}.17=\frac{17}{25}\)
\(a)\) \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{1000}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{999}{1000}\)
\(A=\frac{1.2.3.....999}{2.3.4.....1000}\)
\(A=\frac{1}{1000}.\frac{2.3.4.....999}{2.3.4.....999}\)
\(A=\frac{1}{1000}\)
Vậy \(A=\frac{1}{1000}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{999}{1000}\)
\(=\frac{1}{1000}\)
chúc
bn
hk
tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
![](https://rs.olm.vn/images/avt/0.png?1311)
B= \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\)\(\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)= \(\frac{1}{20}\)
vậy B= \(\frac{1}{20}\)
\(a.\frac{1}{2^{300}}=\frac{1}{\left(2^3\right)^{100}}=\frac{1}{8^{100}}\)
\(\frac{1}{3^{200}}=\frac{1}{\left(3^2\right)^{100}}=\frac{1}{9^{100}}\)
\(\text{Vì }\frac{1}{8}>\frac{1}{9}\Rightarrow\frac{1}{\left(2^3\right)^{100}}>\frac{1}{\left(3^2\right)^{100}}\Rightarrow\frac{1}{2^{300}}>\frac{1}{3^{200}}\)
\(b.\frac{1}{5^{199}}:\text{Giữ nguyên}\)
\(\frac{1}{3^{200}}=\frac{1}{3^{199}\cdot3}\)
\(\frac{1}{5^{199}}< \frac{1}{3^{199}\cdot3}\Rightarrow\frac{1}{5^{199}}< \frac{1}{3^{200}}\)
2 bài dưới bn làm tương tự nhé