![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
\(\frac{100^{100}+1}{^{100^{90}}+1}\)>1;\(\frac{100^{90}+1}{100^{98}+1}\)<1
=>\(\frac{100^{100}+1}{100^{90}+1}\)>\(\frac{100^{90}+1}{100^{98}+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(125^5\)và \(25^7\)
Ta có:
\(125^5=\left(5^3\right)^5=5^{15}\)
\(25^7=\left(5^2\right)^7=5^{14}\)
Vì \(5^{15}>5^{14}\)
\(\Rightarrow125^5>25^7\)
a, \(125^5=\left(5^3\right)^5=5^{15}\)
\(25^7=\left(5^2\right)^7=5^{14}\)
mà \(5^{15}>5^{14}\)\(\Rightarrow\)\(125^5>25^7\)
b, ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
mà \(1000^{10}< 1024^{10}\)nên \(10^{30}< 2^{100}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)ta có:
1030=(103)10=100010
2100=(210)10=102410
=>2100>1030
phần b 3 nhân với 4 rồi áp dụng tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(5+8\right)^{100}=13^{100}\)
\(\left(25-12\right)^{101}=13^{101}\)
vi \(13^{100}< 13^{101}\)nen \(\left(5+8\right)^{100}< \left(25-12\right)^{101}\)
b) \(\left(15-8\right)^{10}=7^{10}\)
\(7^{11}=7^{11}\)
vi \(7^{11}>7^{10}\)nen \(\left(15-8\right)^{10}< 7^{11}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có \(2000^{100}-2000^{95}=2000^{95}\left(2000^5-1\right)\)
\(2000^{95}-2000^{90}=2000^{90}\left(2000^5-1\right)\)
vì 2000^95>2000^90 nên 2000^100-2000^95>2000^95-2000^90
90^8<100^7
Ta có:
90^8=(10.9)^8=10^72
100^7=(10.10)^7=10^70
Vì 10^72>10^70 nên 90^8>100^7
Vậy 90^8>100^7