K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

Ta thấy: hai phân số đều cho giá trị là âm 

Lại thấy: -2020.2004<2019.-2003 nên -2020/2019<-2003/2004

24 tháng 2 2020

Xét 2 phân số 14/31 và 49/101

Suy ra phải so sánh 14.101 (1) và 31.49(2)

Xét (1)

14.101=14.49+728

Xét (2)

31.49=14.49+833

Do 14.49+728<14.49+833 nên 49/101>14/31

17 tháng 4 2020

                        3667                                         2456                                            2145                                                                                                         *                                               -                                                    -                                                                                                                        9                                         1423                                             2133                                                                                                                                                                                                      

2 tháng 7 2017

Ta có : \(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)

            \(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)

Vì \(\frac{1}{2003.2004}>\frac{1}{2004.2005}\)

Nên : \(\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)

16 tháng 8 2018

câu 2003.2004 lớn hơn 2004.2005

Bài 1

\(\frac{2017}{2018}+\frac{2018}{2019}\)và \(\left(\frac{2017+2018}{2018+2019}\right)\)mk chữa lại đề luôn đó 

Ta tách :

\(\frac{2017}{\left(2018+2019\right)+2018}\)

đến đây ta tách 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

vậy....

mấy câu khác tương tự 

8 tháng 7 2019

2) \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{2}{2003}+\frac{2}{2004}+\frac{2}{2005}}\)

\(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{2.\frac{1}{2003}+2.\frac{1}{2004}+2.\frac{1}{2005}}\)

=\(\frac{1\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}{2.\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}\)

\(\frac{1}{2}\)

3) \(2013+\left(\frac{2013}{1+2}\right)+\left(\frac{2013}{1+2+3}\right)+...+\left(\frac{2013}{1+2+3+...+2012}\right)\)

\(2013.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}\right)\)

\(2013.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{2025078}\right)\)

\(2013.2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4050156}\right)\)

=\(4026.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)\)

\(4026.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)

\(4026.\left(1-\frac{1}{2013}\right)\)

\(4026.\frac{2012}{2013}\)

=\(4024\)

a, \(\frac{15}{106}\)và \(\frac{21}{133}\)

          Ta có:

\(\frac{15}{106}< \frac{15}{100}=\frac{3}{20}=\frac{21}{140}< \frac{21}{133}\)

\(\Rightarrow\frac{15}{106}< \frac{21}{133}\)

             Vậy ........

b, \(\frac{31}{100}\)và \(\frac{89}{150}\)

       Ta có:

\(\frac{31}{100}< \frac{31}{93}=\frac{1}{3}=\frac{50}{150}< \frac{89}{150}\)

\(\Rightarrow\frac{31}{100}< \frac{89}{150}\)

        Vậy........

c, \(\frac{2020}{2019}\)và \(\frac{2021}{2020}\)

           Ta có:

\(\frac{2020}{2019}-1=\frac{1}{2019}\)     ;

\(\frac{2021}{2020}-1=\frac{1}{2020}\)

    Vì \(\frac{1}{2019}>\frac{1}{2020}\)

               \(\Rightarrow\frac{2020}{2019}-1>\frac{2021}{2020}-1\)  

              \(\Rightarrow\frac{2020}{2019}>\frac{2021}{2020}\)

 Vậy .........

d, n+2019/n+2021 và n+2020/n+2022

Câu d bn tự lm nhé

            

10 tháng 8 2019

Cảm ơn bạn nhiều lắm! THANK YOU VERY MUCH!!!!!!!!!

29 tháng 6 2015

a) Ta có: \(1-\frac{2002}{2003}=\frac{1}{2003}\)

\(1-\frac{2003}{2004}=\frac{1}{2004}\)

Vì \(\frac{1}{2003}>\frac{1}{2004}\)

\(\Rightarrow\frac{2002}{2003}>\frac{2003}{2004}\)

b) Ta có: \(\frac{-2005}{-2004}=\frac{2005}{2004}>1\)

\(\frac{-2002}{2003}<1\)

\(\Rightarrow\frac{-2002}{2003}<\frac{-2005}{-2004}\)

20 tháng 6 2017
$$hêhê
13 tháng 9 2017

A = \(\frac{2004-2003}{2004+2003}\)và  B = \(\frac{2004^2-2003^2}{2004^2+2003^2}\)

Ta đặt : 2004 = x

             2003 = y

Theo tính chất cơ bản của phân thức , ta có :

\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+y^2+2xy}\)       ( 1 )

Vì x > 0 , y > 0 nên x2 + y2 + 2xy > x2 + y2

\(\Rightarrow\frac{x^2-y^2}{x^2+y^2+2xy}< \frac{x^2-y^2}{x^2+y^2}\)      ( 2 )

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Vậy A < B

https://h.vn/hoi-dap/tim-kiem?q=so+s%C3%A1nh+2+ph%C3%A2n+s%E1%BB%91++A=+2004%5E2003++1+/+2004%5E2004++1++B=2004%5E2002+1/2004%5E2003++1&id=238505

30 tháng 8 2016

Câu hỏi của linh phạm - Toán lớp 6 - Học toán với OnlineMath