Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu này chắc chắn có bạn trả lời được thôi. Dùng đồng dư hoặc hàm euler.
câu a: Mình gợi ý chứng minh M chia hết cho 3 nhưng không chia hết cho 9 nên M không là số chính phương.
a, Nguyên lý đirichle cứu với!!!!!!!! | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam
b, Ta có: \(20^5\equiv1\left(mod11\right)\)
\(\left(20^5\right)^3\equiv1^3\equiv1\left(mod11\right)\)
Tương ứng với \(20^{15}\) : 11 dư 1
=> 2015 - 1 \(⋮\) 11 (đpcm)
c, Có: \(2^{30}\equiv12\left(mod13\right)\);
\(3^{15}\equiv1\left(mod13\right)\)
\(\left(3^{15}\right)^2\equiv1^2\equiv1\left(mod13\right)\)
<=> \(2^{30}+3^{30}\) \(\equiv12+1\equiv13\left(mod13\right)\)
Vì 13 chia hết cho 13 nên 230 + 330 chia hết cho 13 (đpcm)
d, tượng tự b
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{x-1}{1992}+\dfrac{x-2}{1993}=\dfrac{x-3}{1994}+\dfrac{x-4}{1995}\)
\(\Rightarrow\left(\dfrac{x-1}{1992}+1\right)+\left(\dfrac{x-2}{1993}+1\right)=\left(\dfrac{x-3}{1994}+1\right)+\left(\dfrac{x-4}{1995}+1\right)\)
\(\Rightarrow\left(\dfrac{x-1+1992}{1992}\right)+\left(\dfrac{x-2+1993}{1993}\right)=\left(\dfrac{x-3+1994}{1994}\right)+\left(\dfrac{x-4+1995}{1995}\right)\)
\(\Rightarrow\dfrac{x+1991}{1992}+\dfrac{x+1991}{1993}=\dfrac{x+1991}{1994}+\dfrac{x+1991}{1995}\)
\(\Rightarrow\dfrac{x+1991}{1992}+\dfrac{x+1991}{1993}-\dfrac{x+1991}{1994}-\dfrac{x+1991}{1995}=0\)
\(\Rightarrow\left(x+1991\right)\left(\dfrac{1}{1992}+\dfrac{1}{1993}-\dfrac{1}{1994}-\dfrac{1}{1995}\right)=0\)
\(\Rightarrow\left(x+1991\right)=0\) ( vì \(\left(\dfrac{1}{1992}+\dfrac{1}{1993}-\dfrac{1}{1994}-\dfrac{1}{1995}\right)\ne0\)
\(\Rightarrow x=-1991\)
![](https://rs.olm.vn/images/avt/0.png?1311)
đang rảnh :v
Giải:
đa thức chia có bậc cao nhất là 2
=> số dư cuối cùng chỉ có thể có số hạng bậc cao nhất là 1 => sô dư có dạng: ax + b
Gọi thương của 2 đt đã cho là \(M\left(x\right)\)
Ta có: \(\left(1+x^{1992}+x^{1993}+x^{1994}+x^{1995}\right)=\left(1-x^2\right)\cdot M\left(x\right)+ax+b\)
Cho x = 1 => 5 = a + b
Cho x = -1 => 1 = -a + b
=> hpt: \(\left\{{}\begin{matrix}a+b=5\\-a+b=1\end{matrix}\right.\) giải hệ ta được \(\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
=> số dư cuối cùng là: \(2x+3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ê thông ơi hình như đề là cm ko cp chứ , cậu xem lại đề đi nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\dfrac{n^3-1}{n^3+1}=\dfrac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n+1\right)\left(n^2-n+1\right)}=\dfrac{\left(n-1\right)[\left(n+0,5\right)^2+0,75]}{\left(n+1\right)[\left(n-0,5\right)^2+0,75]}\)
Thay vào M ta có:
\(M=\dfrac{2,5^2+0.75}{3.\left(1,5^2+0,75\right)}.\dfrac{2.\left(3,5^2+0,75\right)}{4.\left(2,5^2+0,75\right)}...\dfrac{99[\left(100,5\right)^2+0,75]}{101.[\left(99,5\right)^2+0,75}\)
\(=\dfrac{1.2.3...99}{3.4.5...101}.\dfrac{\left(2,5^2+0,75\right).\left(3,5^2+0,75\right)...[\left(100,5\right)^2+0,75]}{\left(1,5^2+0,75\right).\left(2,5^2+0,75\right)...[\left(99,5\right)^2+0,75]}\)\(=\dfrac{1.2}{100.\left(101\right)}.\dfrac{\left(100,5\right)^2+0,75}{1,5^2+0,75}=\dfrac{2}{3}.\dfrac{\left(100^2+100+1\right)}{3.100.101}>\dfrac{2}{3}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(f\left(x\right)=x^{1992}.\left(x^2+x+1\right)-\left(x^{1992}-1\right)\)
\(x^{1992}.\left(x^2+x+1\right)⋮x^2+x+1\) Ta xét x^1992-1
Có \(x^{1992}-1=\left(x^3\right)^{664}-1^{664}⋮x^3-1=\left(x-1\right)\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)
Vậy dư của phép chia trên là 0000000
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 nè
Xét 2004 số
2004
20042004
...
20042004...2004(2004 số 2004)
Theo nguyên lý Đi-rích-lê,tồn tại 2 số khi chia cho 2003 có cùng số dư.Gọi 2 số đó là m và n
Ta có:20042004...2004-20042004...2004\(⋮\)2003
(m số 2004) (n số 2004)
=>20042004...2004.104n\(⋮\)2003
(m-n số 2004)
mà 104n và 2003 nguyên tố cùng nhau
=>20042004...2004\(⋮\)2003(đpcm)
(m-n số 2004)