Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ko .vì khi 330 chia nhỏ thành 33 thì chữ số tận cùng của nó là 7.vậy số tận cùng của 330 là số 7 nhưng số chính phương ko có chữ số tận cùng nào bằng 7 nên số tận cùng của Sko phải là số chính phương

\(S=1+3+3^2+3^3+...+3^{30}\Rightarrow3S=3+3^2+3^3+...+3^{31}\Rightarrow3S-S=3^{31}-1=3^{4.7+3}-1=\left(3^4\right)^7.27-1=\left(...1\right).27-1=\left(...27\right)-1=\left(...26\right)\)=> Chữ số tận cùng của S là 26: 2 = 13
b/
Vì scp ko có t/c là 3 => S ko là scp

a) Ta có S = 1 + 3 + 32 + ... + 398
=> 3S = 3 + 32 + 33 + ... + 399
Khi đó 3S - S = ( 3 + 32 + 33 + ... + 399) - (1 + 3 + 32 + ... + 398)
=> 2S = 399 - 1
=> S = \(\frac{3^{99}-1}{2}\)
b) Ta có 399 - 1 = 396.33 - 1 = (34)24 . (...7) - 1 = (...1).(...7) - 1 = (...7) - 1 = ...6
=> (399 - 1) : 2 = ...6 : 2 = ....3
=> S không là số chính phương
a. \(S=1+3+3^2+3^3+...+3^{98}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}\)
\(\Rightarrow3S-S=3^{99}-1\)
\(\Rightarrow S=\frac{3^{99}-1}{2}\)
b. \(S=1+3+3^2+...+3^{98}\)
\(\Rightarrow S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(\Rightarrow S=13+3^3.13+...+3^{96}.13\)
\(\Rightarrow S=13\left(1+3^3+3^6+...+3^{98}\right)⋮13\)
=> S không phải là SCP

\(1^3+2^3=1+8=9=3^2\)
Vậy là số chính phương
\(1^3+2^3+3^3=1+8+27=36=6^2\)
Vậy là số chính phương
\(1^3+2^3+3^3+4^3=1+8+27+64=100=10^2\)
Vậy là số chính phương
a)
Ta có
\(1^3+2^3=1+8=9=3^2=\left(-3\right)^2\)
=> SCP
b)
Ta có
\(1^3+2^3+3^3=1+8+27=36=6^2=\left(-6\right)^2\)
=> SCP
c)
Ta có
\(1^3+2^3+3^3+4^3=1+8+27+64=100=10^2=\left(-10\right)^2\)
=> SCP

a) 2 + 22 + 23 + ...+ 220 chia hết cho 2 nhưng không chia hết cho 4 nên không phải số chính phương.
b) 1015 + 8 = (...0) + 8 = ...8 có tận cùng là 8 nên không phải số chính phương.

S=2+22+23+...+2100
S=(2+22+23+24)+...+(297+298+299+2100)
S=2x(1+2+22+23)+...+297x(1+2+22+23)
S=2x15+...+297x15
S=15x(2+...+297)
Vậy S\(⋮\)15
S=2+22+23+...+2100
=>2S=22+23+...+2101
=>S=2S-S=(22+23+...+2101)-(2+22+23+...+2100)
=>S=2101-2=225x4-2=...6-2=...4
Vậy chữ số tận cùng của S là 4

\(S=3+3^2+3^3+3^4+3^5+.....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+......+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+.......+3^{99}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+....+3^{99}\right)\)
\(=4\left(3+3^3+.....+3^{99}\right)\)chia hết cho ( đpcm )
\(s=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(s=3\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
\(s=\left(1+3+3^2+3^3\right).\left(3+...+3^{97}\right)\)
\(s=120.\left(3+...+3^{97}\right)\)
\(\Rightarrow\)s chia hết cho 120
\(S=2+2^2+2^3+...+2^{60}\)
\(2S=2\cdot\left(2+2^2+2^3+...+2^{60}\right)\)
\(2S=2^2+2^3+2^4+...+2^{61}\)
\(2S-S=\left(2^2+2^3+2^4+...+2^{61}\right)-\left(2+2^2+2^3+...+2^{60}\right)\)
\(S=2^{61}-2\)
\(S=2\left(2^{60}-1\right)\)
Mà: \(2\cdot\left(2^{60}-1\right)\) không phải là số chính phương
\(\Rightarrow S\) không phải là số chính phương