K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

b) S=(30+32+34)+...+(31998+32000+32002)

S= 91+...+31998(1+32+34)

S=91+...+31998.91

S=91(1+36+...+31998)

S=13.7.(1+36+...+31998) chia hết cho 7

       
 

5 tháng 10 2015

Thôi không cần nữa 

26 tháng 11 2017

a) 9S=3^2+3^4+...+3^2002+3^2004

=> 9S-S= (3^2+3^4+...+3^2002+3^2004)-(3^0+3^2+...+3^2002)

8S = 3^2004 - 3 = 3(3^2003-1) 

=> S= 3/8.(3^2003-1)

b) Ta có: S= (3^0+3^2+3^4) + (3^6+3^8+3^10)+....+(3^1998+3^2000+3^2002)

             S = 3^0(1+3^2+3^4) +3^6(1+3^2+3^4)+....+3^1998(1+3^2+3^4)

 S = 3^0.91+3^6.91+...+3^1998.91

S = 3^0.13.7 + 3^6.13.7 +...+ 3^1998.13.7

Vì mỗi số hạng đều chia hết cho 7 nên S chia hết cho 7

\(S=3^0+3^1+3^2+.....+3^{2002}\)

\(\Rightarrow3S=3\left(3^0+3^1+3^2+.....+3^{2002}\right)=3^1+3^2+.....+3^{2001}\)

\(\Rightarrow3S-S=3^{2001}-3^0\)

\(\Rightarrow2S=3^{2001}-1\)

\(\Rightarrow S=\frac{3^{2001}-1}{2}\)

30 tháng 7 2016

a) \(S=3^0+3^1+3^2+...+3^{2002}\)

\(3S=3+3^2+3^3+...+3^{2003}\)

\(3S-S=\left(3+3^2+3^3+...+3^{2003}\right)-\left(3^0+3^1+3^2+...+3^{2002}\right)\)

\(2S=3^{2003}-1\)

\(S=\frac{3^{2003}-1}{2}\)

21 tháng 4 2016

a) \(S=3^0+3^2+3^4+....+3^{2002}\)

\(3^2S=3^2+3^4+....+3^{2004}\)

\(3^2S-S=\left(3^2+...+3^{2004}\right)-\left(3^0+...+3^{2002}\right)\)

\(8S=3^{2004}-1\)

\(S=\frac{3^{2004}-1}{8}\)

7 tháng 6 2016

s = 3 ^0 + 3 ^ 2 + 3^ 4+ 3 ^6 +... + 3 ^2002

9S =  3 ^4 + 3^6 + 3 ^ 2004

9S - S= 3 ^ 2004 - 1

8S = 3^2004 - 1

S = 3 ^ 2004 - 1/8

k mk nha

5 tháng 1 2019

Bài làm

 a)               S = \(3^0\)\(3^2\)\(3^4\)+ ......+ \(3^{2002}\)

        \(3^2\)S =  \(3^2\) + \(3^4\)\(3^6\)+ ..... + \(3^{2004}\)

  \(3^2\)S - S =  \(3^{2004}\) - \(3^0\)

  9 . S - S    =  \(3^{2004}\) - \(3^0\)

    8 . S        =  \(3^{2004}\) - \(3^0\)

      S           =  \(\frac{3^{2004}-3^0}{8}\)

5 tháng 1 2019

a. S = 30 + 32 + 34 + ... + 32002

32S  = 32( 30 + 32 + 34 + ... + 32002 )

9S    = 32 + 34 + 36... + 32004

9S - S = (32 + 34 + 36... + 32004 ) - ( 30 + 32 + 34 + ... + 32002)

8S     = 32004 - 1

   S     = (32004 - 1) : 8

b. Có S = 30 + 32 + 34 + ... + 32002 có 1002 số hạng

             = ( 30 + 32 + 34 ) + ( 36 + 38 + 310 ) + ... + ( 31998 + 32000 + 32002 ) có 334 nhóm.

             =     91                  + 36 (30 + 32 + 34 ) + ... + 31998( 30 + 32 + 34 )

             =  91                     + 36 . 91                   + ... + 31998 . 91

              =91 ( 1 + 36 + ... + 31998 ) = 7 . 13 . ( 1 + 36 + ... + 31998 

Vì ( 1 + 36 + ... + 31998 \(\in\)

\(\Rightarrow\)7 . 13 . ( 1 + 36 + ... + 31998 )  \(⋮\)

Hay S \(⋮\)7 ( đpcm )

15 tháng 12 2016

 

a, \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

\(\Rightarrow9S=3^2+3^4+3^6+3^8+...+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\Rightarrow S=\frac{3^{2004}-1}{8}\)

b, Xét dãy số mũ : 0;2;4;6;...;2002

Số số hạng của dãy số trên là :

( 2002 - 0 ) : 2 + 1 = 1002 ( số )

Ta ghép được số nhóm là :

1002 : 3 = 334 ( nhóm )

Ta có : \(S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

\(S=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(S=1.91+3^6.91+...+3^{1998}.91=\left(1+3^6+...+3^{1998}\right).91\)

Vì : \(91⋮7;1+3^6+...+3^{1998}\in N\Rightarrow S⋮7\) (đpcm)

16 tháng 12 2016

CẢM ƠN