Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a/ Ta có
P = \(\frac{1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) - \(\frac{2+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\frac{1+\sqrt{x}}{x+\sqrt{x}+1}\)
= \(\frac{-\sqrt{x}}{1+\sqrt{x}+x}\)

a. ĐK \(x\ge0\)và \(x\ne1\)
A =\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\cdot\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+2\sqrt{x}+1+\sqrt{x}-x-1+\sqrt{x}}\)
\(=\frac{x+1}{4\sqrt{x}}\)
b. Thay \(x=\frac{2-\sqrt{3}}{2}\Rightarrow A=\frac{\frac{2-\sqrt{3}}{2}+1}{4\sqrt{\frac{2-\sqrt{3}}{2}}}=\frac{4-\sqrt{3}}{4\left(\sqrt{3}-1\right)}=\frac{4-\sqrt{3}}{4-4\sqrt{3}}=-\frac{1+3\sqrt{3}}{8}\)
c . Ta có \(A-\frac{1}{2}=\frac{x+1}{4\sqrt{x}}-\frac{1}{2}=\frac{x-2\sqrt{x}+1}{4\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}>0\)với \(\forall x>0\)và \(x\ne1\)
Vậy A >1/2

a)ĐKXĐ : x > 0
P = \(\left(\frac{x-1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(1+\sqrt{x}\right)}\right)\)
= \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{1}{\sqrt{x}}.\left(\sqrt{x}-1+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
= \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{\sqrt{x}-1}{\sqrt{x}}.\left(1-\frac{1}{\sqrt{x}+1}\right)\)
= \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right).\sqrt{x}}{\sqrt{x}}\)
= \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
Vậy P = \(\frac{\sqrt{x}+1}{\sqrt{x}}\)
b) x = \(\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\frac{2.\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{3}-1\)
=> P = \(\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1}=\frac{\sqrt{3}}{\sqrt{3}-1}\)
= \(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3+1}\right)}=\frac{3+\sqrt{3}}{3-1}=\frac{3+\sqrt{3}}{2}\)
c)\(P\sqrt{x}=6\sqrt{x}-3-\sqrt{x-4}\)
\(\Leftrightarrow\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{\sqrt{x}}=6\sqrt{x}-3-\sqrt{x-4}\)
\(\Leftrightarrow\sqrt{x}+1=6\sqrt{x}-3-\sqrt{x-4}\)
\(\Leftrightarrow\sqrt{x-4}=5\sqrt{x-4}\)
Đặt \(\hept{\begin{cases}a=\sqrt{x}\\b=\sqrt{x-4}\end{cases}\Rightarrow a^2+b^2=x-\left(x-4\right)=4}\)
\(\Rightarrow\hept{\begin{cases}a^2-b^2=4\\b=5a-4\end{cases}\Rightarrow\hept{\begin{cases}a^2-\left(5a-4\right)^2=4\left(^∗\right)\\b=5a-4\end{cases}}}\)
Từ (*) <=> a2 -(25a2 -40a + 16 ) =4
<=> -24a2 + 40a - 20 = 0
=> \(\Delta'=-80< 0\)
=> PT vô nghiệm
=> ko tồn tại x thỏa mãn

\(A=\frac{1}{\sqrt{x}+\sqrt{x-1}}-\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x\sqrt{x}}{1-\sqrt{x}}\)
\(=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}-\frac{\sqrt{x}+\sqrt{x-1}}{\left(\sqrt{x}-\sqrt{x-1}\right)\left(\sqrt{x}+\sqrt{x-1}\right)}-\frac{x\sqrt{x}\left(1+\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)