Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)

A = \(\sqrt{2}\left(\sqrt{8}-\sqrt{32}-2\sqrt{18}\right)=\sqrt{16}-\sqrt{64}-2\sqrt{36}=4-8-2\cdot6=-4-12=-16\)
--
\(B=\sqrt{2}-\sqrt{3-\sqrt{5}}=\dfrac{2-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{2-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\dfrac{2-\sqrt{5}+1}{\sqrt{2}}=\dfrac{3-\sqrt{5}}{\sqrt{2}}\)
--
\(C=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\dfrac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}-\dfrac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}=-\dfrac{2}{\sqrt{2}}=-\sqrt{2}\)
còn lại lúc nx mk lm nốt nhé, h bận

https://hoc24.vn/hoi-dap/question/407636.html
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}\)
= 9
~ ~ ~ ~ ~
\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\sqrt{3}-2}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)

a, Nghe đề sai sai là lạ
b, Ta có : \(B=\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)
\(=\sqrt{4}-\sqrt{6+2\sqrt{5}}+2\sqrt{5}=2+2\sqrt{5}-\sqrt{5+2\sqrt{5}+1}\)
\(=2+2\sqrt{5}-\sqrt{5}-1=\sqrt{5}+1\)
c, Ta có : \(C=\left(\sqrt{14}-\sqrt{10}\right)\left(\sqrt{6}+\sqrt{35}\right)\)
\(=\sqrt{84}-\sqrt{60}+\sqrt{490}-\sqrt{350}=2\sqrt{21}-2\sqrt{15}+7\sqrt{10}-5\sqrt{14}\)
d, Ta có : \(D=\sqrt{11-4\sqrt{7}}-\sqrt{2}\sqrt{8+3\sqrt{7}}\)
\(=\sqrt{4-4\sqrt{7}+7}-\sqrt{9+6\sqrt{7}+7}\)
\(=\sqrt{7}-2-3-\sqrt{7}=-5\)

Bài 1 :
a) \(\sqrt{4\left(a-3\right)^2}+2\sqrt{\left(a^2+4a+4\right)}\)
= \(2\left|a-3\right|+2\left|a+2\right|\)
\(=2.\left(-a+3\right)+2\left(-a-2\right)\)
b) có sai đề ko ?
c) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\sqrt{\dfrac{x^2\left(x+2\right)}{x+2}}=4x-2\sqrt{4}+x=3x-2\sqrt{4}\)

d/ \(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Leftrightarrow x^3=3+\sqrt{9+\frac{125}{27}}+3-\sqrt{9+\frac{125}{27}}-3\left(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\right)\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Leftrightarrow x^3=6-3x\sqrt[3]{9-9-\frac{125}{27}}\)
\(\Leftrightarrow x^3=6-5x\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow x=1\)
c/
\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{12}+4}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=3-1=2\)

1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)
\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)
\(=6-8=-2\)
2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=3^2-\left(\sqrt{5}\right)^2\)
\(=9-5=4\)
3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)
=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn

b) \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}+\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}-\sqrt{2}.\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}+\dfrac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{2}}-\sqrt{2}.\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}+\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}-\sqrt{2}.\left(\sqrt{5}-1\right)\)
\(=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}}-\sqrt{10}+\sqrt{2}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{\sqrt{2}}-\sqrt{10}+\sqrt{2}=\dfrac{2\sqrt{5}}{\sqrt{2}}-\sqrt{10}+\sqrt{2}\)
\(=\sqrt{10}-\sqrt{10}+\sqrt{2}=\sqrt{2}\)
e) \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(C=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(C=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(C=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)
câu a ; f chưa nghỉ ra
a) \(A=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+-\sqrt{3}-1=-2\)
b) \(B=\sqrt{11-6\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{3^2-2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)
\(=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left|3-\sqrt{2}\right|-\left|\sqrt{2}-1\right|\)
\(=3-\sqrt{2}-\sqrt{2}+1=4-2\sqrt{2}\)
c) \(C=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left(\sqrt{5}+\sqrt{3}\right)\left|\sqrt{5}-\sqrt{2}\right|\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{2}\right)=5-\sqrt{10}+\sqrt{15}-\sqrt{6}\)