Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Dean thật, gõ gần xong rồi tự nhiên nó tạch, phải gõ lại -.-
Từ gt, ta suy ra:
\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right].\dfrac{1}{2}=0\)(Tự phân tích, không còn kiên nhẫn để gõ lại)
Mà a+b+c khác 0 => a=b=c
Thay vào thì C=8
bai 2 :
dat cac tich ab , bc , ca lan luot la x,y,z ( khac 0 )
thay vao ta dc : x^3+y^3+z^3=3xyz
=> (x+y)(x^2-2xy+y^2)+z^3-3xyz=0
=>(x+y)(x^2+2xy+y^2)+z^3-3xy(x+y)-3xyz=0
=》(x+y+z)【(x+y)^2 -(x+y)z+z^2】-3xy(x+y+z)=0
=>(x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0
=>\(\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)=0
=> x+y+z=0 hoac x=y=z
TH1 : a+b+c=0
=>P=-1
TH2 : a=b=c
=>P=8
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^3+b^3+c^3=3abc\\ \left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\\ \left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\\ \left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Do \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ \Rightarrow a=b=c\)
=>P=20093
![](https://rs.olm.vn/images/avt/0.png?1311)
từ giả thiết ,ta có:\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\)\(\Leftrightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1\)---> thay 1= vào ...
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn ơi, hình như bạn nhớ nhầm rồi đấy, ko có HĐT đó đâu, mà có HĐT thức ấy nhưng a+b+c = 0 nữa cơ
ĐK : \(a\ne b\ne c\)
\(\dfrac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ca\right)-3ab\left(a+b+c\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
\(=\dfrac{2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}\)
\(=\dfrac{a+b+c}{2}\)