K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(x-2\right)^2-\left(2x+1\right)^2=x^2-4x+4-4x^2-4x-1=-3x^2+3=-3\left(x^2-1\right)\)

\(=-3\left(x-1\right)\left(x+1\right)\)

\(B=\left(x-2y\right)^2-\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(x-2y-x-2y\right)=-4y\left(x-2y\right)\)

\(C=\left(x+1\right)^3-\left(x-2\right)^3=\left(x^3+3x^2+3x+1\right)-\left(x^3-6x^2+12x-8\right)\)

\(=x^3+3x^2+3x+1-x^3+6x^2-12x+8=9x^2-9x+9=9\left(x^2-x+1\right)\)

\(D=\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2=\left(x-1-x-1\right)^2=-2^2=4\)

\(E=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+2y-x=x^2+4xy+4y^2+2\left(x^2-4y^2\right)+2y-x\)

\(=x^2+4xy+4y^2+2x^2-8y^2+2y-x=3x^2-4y^2+4xy+2y-x\)

\(G=\left(2x+1\right)^3-\left(2x-1\right)=8x^3+12x^2+6x+1-2x+1=8x^3+12x^2+4x+2\)

\(=2\left(4x^3+6x^2+2x+1\right)=2\left(4x\left(x+1\right)^2+1\right)\)

A = ( x - 2 )2 - ( 2x + 1 )2 

A = x2 - 4x + 4 - 4x2 + 4x + 1 

A = - 3x2 + 5 

B = ( x - 2y )2 - ( x - 2y ) . ( 2y + x ) 

B = x2 - 4xy + 4y2 - ( 2xy + x2 - 4y2 - 2xy ) 

B = x2 - 4xy + 4y2 - 2xy - x2 + 4y2 + 2xy 

B = 8y2 - 4xy 

29 tháng 7 2017

\(x^2+3x+2\) =\(x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)=\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Dấu "=" xảy ra <=>\(x+\frac{3}{2}=0\)<=>\(x=-\frac{3}{2}\)

Bài 2:

a) \(x^2-4x+y^2+2y+5=0\)

=> \(\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)

=>\(\left(x-2\right)^2+\left(y+1\right)^2=0\)

Vì \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\)nên:

=>\(\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

b)\(2x^2+y^2-2xy+10x+25=0\)

=>\(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

=>\(\left(x-y\right)^2+\left(x+5\right)^2=0\)

Tới đây thì dễ nhá !

29 tháng 7 2017

Mih nhầm nhá, câu a là -1/4 cơ nha bạn

28 tháng 6 2017

aVT=.\(\left(a+b+c\right)^2+a^2+b^2+c^2\)

=\(a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)

=\(2a^2+2b^2+2c^2+2ab+2ac+2bc\)

VP=\(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\)=\(a^2+2ab+b^2+b^2+2bc+b^2+a^2+2ac+c^2\)

=\(2a^2+2b^2+2c^2+2ab+2bc+2ac\)

Vậy VT=VP

28 tháng 6 2017

a)\(\text{(a+b+c)^2 +a^2+b^2+c^2=(a+b)^2+(b+c)^2+(c+a)^2}\)

Ta có:

\(\left(a+b+c\right)^2+a^2+b^2+c^2=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2\)

\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

b) Câu b sao chỉ có một vế vậy , hằng đẳng thức thì phải có hai vế chứ

11 tháng 4 2016
giup mik vs. Cau nao cux dk
1 tháng 8 2016

a) \(\left(x-2y\right)^2+\left(x+2y\right)^2=x^2-4xy+4y^2+x^2+4xy+4y^2=2x^2+8y^2\)

b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy^2+y^2\)

\(=2x^2-2y^2+2x^2+2y^2=4x^2\)

1 tháng 8 2016

\(a,\left(x-2y\right)^2+\left(x+2y\right)^2\)
\(=\left(x^2-4xy+4y^2\right) +\left(x^2+4xy+4y^2\right)\)
\(=2x^2+8y^2\)
\(b,2\left(x-y\right).\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=2\left(x^2-y^2\right)+\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\)
\(=2x^2-2y^2+2x^2+2y^2\)
\(=4x^2\)

25 tháng 8 2018

\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)

\(=\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}\)

\(=-\frac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^3}\)

\(=-\frac{x+y}{\left(x-y\right)^2}\)

2 tháng 10 2016

Rút gọn biểu thức

\(=\left(1-y^2\right)z+2y^2+\left(-x^2\right)y+2x^2-2\)