\(\dfrac{1}{\sqrt{2}+1}\) - \(\dfrac{\sqrt{8}-\sqrt{10}}{2-\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2023

\(\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}\\ =\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{2}.\sqrt{4}-\sqrt{2}.\sqrt{5}}{2-\sqrt{5}}\\ =\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}\\ =\dfrac{1}{\sqrt{2}+1}-\sqrt{2}\\ =\dfrac{1-\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\\ =\dfrac{1-2-\sqrt{2}}{\sqrt{2}+1}\\ =\dfrac{-\sqrt{2}-1}{\sqrt{2}+1}\\ =\dfrac{-\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\\ =-1\)

26 tháng 6 2023

\(\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}=-1+\sqrt{2}-\sqrt{2}=-1\)

15 tháng 7 2017

a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}=\sqrt{16}-6+\sqrt{20}-\sqrt{5}=4-6+2\sqrt{5}-\sqrt{5}=\sqrt{5}-2\)

b) \(0,2\sqrt{\left(-10\right)^3.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=0,2\left|-10\right|\sqrt{3}+2\left|\sqrt{3}-\sqrt{5}\right|=0,2.10.\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)

c) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{4}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{2}{3}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\dfrac{27}{4}\sqrt{2}.8=54\sqrt{2}\)

d) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2.\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}=2\left(3-\sqrt{2}\right)+3\sqrt{2}-5=6-2\sqrt{2}+3\sqrt{2}-5=1+\sqrt{2}\)

21 tháng 9 2018

Mysterious Person giúp e với! Em cảm ơn!!!

a: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)

b: \(=2\sqrt{5}-2-2\sqrt{5}=-2\)

c: \(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

d: \(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{3\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\)

e: \(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)

10 tháng 7 2017

bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không

2 tháng 8 2018

\(a.B=\left(\sqrt{5}-1\right)\sqrt{6+2\sqrt{5}}=\left(\sqrt{5}-1\right)\sqrt{5+2\sqrt{5}+1}=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)

\(b.A=\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}=\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}=\dfrac{1}{\sqrt{2}+1}-\sqrt{2}=\dfrac{-1-\sqrt{2}}{\sqrt{2}+1}=-1\)

a: \(=\dfrac{2+\sqrt{3}}{2-\sqrt{3}}-\dfrac{2-\sqrt{3}}{2+\sqrt{3}}\)

\(=\dfrac{7+4\sqrt{3}-7+4\sqrt{3}}{1}=8\sqrt{3}\)

b: \(=\sqrt{2}-1-\sqrt{2}=-1\)

5 tháng 7 2017

\(A=\dfrac{1}{\sqrt{7-\sqrt{24}}+1}-\dfrac{1}{\sqrt{7+\sqrt{24}}+1}\)

\(=\dfrac{\sqrt{7-2\sqrt{6}}-1}{7-2\sqrt{6}-1}-\dfrac{\sqrt{7+2\sqrt{6}}-1}{7+2\sqrt{6}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{6}-1\right)^2}-1}{6-2\sqrt{6}}-\dfrac{\sqrt{\left(\sqrt{6}+1\right)^2}-1}{6+2\sqrt{6}}\)

\(=\dfrac{\sqrt{6}-2}{\sqrt{6}\left(\sqrt{6}-2\right)}-\dfrac{\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)

\(=\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{6}+2}=\dfrac{\sqrt{6}+2-\sqrt{6}}{\sqrt{6}\left(\sqrt{6}+2\right)}\)

\(=\dfrac{2}{\sqrt{12}\left(\sqrt{3}+\sqrt{2}\right)}=\dfrac{2\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{3}\left(3-2\right)}=\dfrac{3-\sqrt{6}}{3}\)

5 tháng 7 2017

\(5-2\sqrt{6}=\left(\sqrt{2}\right)^2-2\times\sqrt{2}\times\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{3}-\sqrt{2}\right)^2\)

\(7+2\sqrt{10}=\left(\sqrt{2}\right)^2+2\times\sqrt{2}\times\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{2}+\sqrt{5}\right)^2\)

\(8-2\sqrt{15}=\left(\sqrt{5}\right)^3-2\times\sqrt{5}\times\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(B=\dfrac{2}{\sqrt{8-2\sqrt{15}}}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}-\dfrac{3}{\sqrt{7+2\sqrt{10}}}\)

\(=\dfrac{2}{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}-\dfrac{1}{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}-\dfrac{3}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)

\(=\dfrac{2\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\dfrac{1\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\dfrac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}\)

\(=\sqrt{5}+\sqrt{3}-\sqrt{3}-\sqrt{2}-\sqrt{5}+\sqrt{2}=0\)

31 tháng 5 2017

a ) \(\dfrac{2}{\sqrt{3}-1}\) - \(\dfrac{2}{\sqrt{3}+1}\) = \(\dfrac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

= \(\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{3-1}\) = \(\dfrac{4}{2}\) = 2

b) \(\dfrac{5}{12\left(2\sqrt{5}+3\sqrt{2}\right)}\) - \(\dfrac{5}{12\left(2\sqrt{5}-3\sqrt{2}\right)}\)

= \(\dfrac{5\left(2\sqrt{5}-3\sqrt{2}\right)-5\left(2\sqrt{5}+3\sqrt{2}\right)}{12\left(2\sqrt{5}+3\sqrt{2}\right)\left(2\sqrt{5}-3\sqrt{2}\right)}\)

= \(\dfrac{10\sqrt{5}-15\sqrt{2}-10\sqrt{5}-15\sqrt{2}}{12\left(20-18\right)}\)

= \(\dfrac{-30\sqrt{2}}{24}\) = \(\dfrac{-15\sqrt{2}}{12}\) = \(\dfrac{-5\sqrt{2}}{4}\)

c) \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}\) +\(\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\) = \(\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)

= \(\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\) = \(\dfrac{60}{20}\) = 3

31 tháng 5 2017

d) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}-1}\) - \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}+1}\)

= \(\dfrac{\sqrt{3}}{\sqrt{2}-1}\) - \(\dfrac{\sqrt{3}}{\sqrt{2}+1}\) = \(\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)-\sqrt{3}\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

= \(\dfrac{\sqrt{6}+\sqrt{3}-\sqrt{6}+\sqrt{3}}{2-1}\) = \(2\sqrt{3}\)

16 tháng 10 2018

2]\(\sqrt{3}\)+1+\(\sqrt{4-4\sqrt{3}+3}\)=\(\sqrt{3}+1+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}+1+2-\sqrt{3}=3\)

4\(\left(\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}\right)=\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{1}\)

19 tháng 10 2022

1: \(=2\sqrt{7}-12\sqrt{7}+15\sqrt{7}+27\sqrt{7}=32\sqrt{7}\)

3: \(=\sqrt{5}-2-\sqrt{14+6\sqrt{5}}\)

\(=\sqrt{5}-2-3-\sqrt{5}=-5\)

4: \(=2\sqrt{3}+3+4-2\sqrt{3}=7\)

5: \(=3-\sqrt{2}+3+\sqrt{2}+4-3=7\)

6: \(=\sqrt{\dfrac{6+2\sqrt{5}}{4}}+\sqrt{\dfrac{14-6\sqrt{5}}{4}}\)

\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}}{2}=\dfrac{4}{2}=2\)

8: \(=\sqrt{5}-1+\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{4}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{4}}\)

\(=\sqrt{5}-1+\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}\)

\(=\dfrac{2\sqrt{5}-2+3-\sqrt{5}-3-\sqrt{5}}{2}=\dfrac{-2}{2}=-1\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

a)

\(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)

\(=2\sqrt{5}-\sqrt{25}.\sqrt{5}-\sqrt{16}.\sqrt{5}+\sqrt{121}.\sqrt{5}\)

\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=\sqrt{5}(2-5-4+11)=4\sqrt{5}\)

b)

\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=\frac{\sqrt{20}(\sqrt{5}+\sqrt{2})}{\sqrt{5}+\sqrt{2}}+\frac{8(1+\sqrt{5})}{(1-\sqrt{5})(1+\sqrt{5})}\)

\(=\sqrt{20}+\frac{8(1+\sqrt{5})}{1-5}=2\sqrt{5}-2(1+\sqrt{5})=-2\)

23 tháng 9 2018

e cảm ơn cô Akai Haruma

2 tháng 7 2018

\(a.\dfrac{\sqrt{8}+2}{\sqrt{2}+1}.\sqrt{2}=\dfrac{\sqrt{2}.2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=2\sqrt{2}\)

\(b.\dfrac{5+\sqrt{5}}{\sqrt{5}+1}.\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}.\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}=\sqrt{5}.\sqrt{5}=5\)

\(c.\dfrac{2}{\sqrt{2}}+\sqrt{18}+\sqrt{32}=\sqrt{2}+\sqrt{9.2}+\sqrt{16.2}=\sqrt{2}+3\sqrt{2}+4\sqrt{2}=8\sqrt{2}\)

\(d.\left(1-\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\right)\left(1+\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\right)=\left(1-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\right)\left(1+\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\right)=\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)=1-2=-1\)