Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(x\ge\frac{5}{2}\)
\(pt\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+9}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow2x-5=25\)
\(\Leftrightarrow x=15\left(TM\right)\)
Vậy phương trình đã cho có nghiệm duy nhất \(x=15\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-1\right)^2-2\left(x-1\right)\left(x-3\right)+\left(x-3\right)^2=\left(x-1-x+3\right)^2=2^2=4\)
\(\left(2x+3\right)^2+\left(2x+3\right)\left(2x-6\right)+\left(x-3\right)^2=\left(2x+3\right)^2+2\left(2x+3\right)\left(x-3\right)+\left(x-3\right)^2=\left(2x+3+x-3\right)^2=\left(3x\right)^2=9x^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A= \(-2+3\sqrt{x-1}\)
mà \(\sqrt{x-1}\ge0\)
=> A= \(-2+3\sqrt{x-1}\ge-2\)
vậy GTNN của A là -2 khi x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
1.Ý A
\(P=cos^4x-sin^4x=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=cos2x\)
2. Ý B
\(D=sin\left(\dfrac{5\pi}{2}-\alpha\right)+cos\left(13\pi+\alpha\right)-3sin\left(\alpha-5\pi\right)\)
\(=sin\left(2\pi+\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha+12\pi\right)-3sin\left(\alpha+\pi-6\pi\right)\)
\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha\right)-3sin\left(\alpha+\pi\right)\)
\(=cos\alpha-cos\alpha+3sin\alpha=3sin\alpha\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(\left(x-1\right)^2-\left(x+4\right)\left(x-4\right)=x^2-2x+1-x^2+16=17-2x\)
Bài 2:
a) \(3\left(2x-4\right)+15=-11\)
\(\Leftrightarrow6x-12+15=-11\)
\(\Leftrightarrow6x=-14\)
\(\Leftrightarrow x=-\frac{7}{3}\)
b) \(x\left(x+2\right)-3x-6=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=3\end{array}\right.\)