K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,\(ab^2\sqrt{\dfrac{3}{a^2b^4}}=ab^2.\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}=ab^2.\dfrac{\sqrt{3}}{ab^2}=\sqrt{3}\)

b,\(\sqrt{\dfrac{27\left(a-3\right)^2}{48}}=\dfrac{3\sqrt{3}\left(a-3\right)}{4\sqrt{3}}=\dfrac{3}{4}\left(a-3\right)\)

c,\(\sqrt{\dfrac{9+12a+4a^2}{b^2}}=\dfrac{\sqrt{\left(3+2a\right)^2}}{\sqrt{b^2}}=\dfrac{3+2a}{b}\)

d, \(\left(a-b\right).\sqrt{\dfrac{ab}{\left(a-b\right)^2}}=\left(a-b\right).\dfrac{\sqrt{ab}}{\sqrt{\left(a-b\right)^2}}=\left(a-b\right).\dfrac{\sqrt{ab}}{\left(a-b\right)}=\sqrt{ab}\)

23 tháng 4 2017

a. \(\sqrt{4\left(a-3\right)^2}=2.|a-3|=2\left(a-3\right)\) (vì a \(\ge3\) nên a-3\(\ge\) 0. Do đó: \(|a-3|=a-3\))

b. \(\sqrt{9\left(b-2\right)^2}=3.|b-2|=3\left(2-b\right)\) (vì b < 2 nên b-2 < 0. Do đó : \(|b-2|=2-b\))

c. \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)\) ( vì a > 0)

d. \(\sqrt{b^2\left(b-1\right)^2}=b\left(b-1\right)\) (vì b < 0)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

\(\sqrt{\frac{9+12a+4a^2}{b^2}}=\sqrt{\frac{(2a)^2+2.2a.3+3^2}{b^2}}=\sqrt{\frac{(2a+3)^2}{b^2}}\)

\(=|\frac{2a+3}{b}|\)

Vì $a>-1,5; b< 0$ nên \(\frac{2a+3}{b}< 0\Rightarrow \sqrt{\frac{9+12a+4a^2}{b^2}}= |\frac{2a+3}{b}|=\frac{-2a-3}{b}\)

\((a-b)\sqrt{\frac{ab}{(a-b)^2}}=(a-b)\sqrt{ab}.\frac{1}{|a-b|}\)

Do $a< b< 0$ nên $a-b< 0\rightarrow |a-b|=b-a$

\(\Rightarrow (a-b)\sqrt{\frac{ab}{(a-b)^2}}=(a-b).\frac{\sqrt{ab}}{|a-b|}=(a-b).\frac{\sqrt{ab}}{b-a}=-\sqrt{ab}\)

a: \(=2ab\cdot\dfrac{-15}{b^2a}=\dfrac{-30}{b}\)

b: \(=\dfrac{2}{3}\cdot\left(1-a\right)=\dfrac{2}{3}-\dfrac{2}{3}a\)

c: \(=\dfrac{\left|3a-1\right|}{\left|b\right|}=\dfrac{3a-1}{b}\)

d: \(=\left(a-2\right)\cdot\dfrac{a}{-\left(a-2\right)}=-a\)

AH
Akai Haruma
Giáo viên
18 tháng 7 2018

Lời giải:

a)

\(\sqrt{36(b-2)^2}=\sqrt{6^2(b-2)^2}=6\sqrt{(b-2)^2}=6|b-2|=6(2-b)\) do \(b<2\)

b)

\(\sqrt{b^2(b-1)^2}=\sqrt{b^2}\sqrt{(b-1)^2}=|b||b-1|\)

Do \(b< 0\Rightarrow b,b-1< 0\)

\(\Rightarrow \sqrt{b^2(b-1)^2}=|b||b-1|=-b(1-b)=b(b-1)\)

c) \(\sqrt{a^2(a+1)^2}=\sqrt{a^2}\sqrt{(a+1)^2}=|a||a+1|\)

\(=a(a+1)\) do \(a>0\)

d) \(\sqrt{(2a-1)^2}-4a=|2a-1|-4a\)

\(a< \frac{1}{2}\Rightarrow 2a-1< 0\)

\(\Rightarrow \sqrt{(2a-1)^2}-4a=|2a-1|-4a=(1-2a)-4a=1-6a\)

24 tháng 9 2018

câu a là j có b mà điều kiện b < 2

b: \(=\left|b\cdot\left(b-1\right)\right|=b\cdot\left|b-1\right|\)

c: \(=\left|a\right|\cdot\left|a+1\right|=a\left(a+1\right)=a^2+a\)

d: \(=1-2a-4a=-6a+1\)

31 tháng 3 2017

a) = = 0,6.│a│

Vì a < 0 nên │a│= -a. Do đó = -0,6a.

b) = . = ││.│3 - a│.

≥ 0 nên │b│= . Vì a ≥ 3 nên 3 - a ≤ 0, do đó │3 - a│= a - 3.

Vậy = (a - 3).

c) = = = √81.√16.

= 9.4.│1 - a│

Vì a > 1 nên 1 - a < 0. Do đó │1 - a│= a -1.

Vậy = 36(a - 1).

d) : = : ( = : (.│a - b│)

Vì a > b nên a -b > 0, do đó│a - b│= a - b.

Vậy : = : ((a - b)) = .

3 tháng 4 2017

a) = = 0,6.│a│

Vì a < 0 nên │a│= -a. Do đó = -0,6a.

b) = . = ││.│3 - a│.

≥ 0 nên │b│= . Vì a ≥ 3 nên 3 - a ≤ 0, do đó │3 - a│= a - 3.

Vậy = (a - 3).

c) = = = √81.√16.

= 9.4.│1 - a│

Vì a > 1 nên 1 - a < 0. Do đó │1 - a│= a -1.

Vậy = 36(a - 1).

d) : = : ( = : (.│a - b│)

Vì a > b nên a -b > 0, do đó│a - b│= a - b.

Vậy : = : ((a - b)) = .


28 tháng 5 2021

c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)

28 tháng 5 2021

M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu

a,

\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

b,

\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)

\(=\left(a-b\right)2b=2ab-2b^2\)

25 tháng 8 2018

a) \(5+\sqrt{5}=\sqrt{5}\left(\sqrt{5}+1\right)\)

b) \(\sqrt{33}+\sqrt{22}=\sqrt{11}.\sqrt{3}+\sqrt{11}.\sqrt{2}=\sqrt{11}\left(\sqrt{3}+\sqrt{2}\right)\)

c) \(\sqrt{15}-\sqrt{6}=\sqrt{3}.\sqrt{5}-\sqrt{3}.\sqrt{2}=\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)\)

d) \(10+2\sqrt{10}=\sqrt{10}\left(\sqrt{10}+2\right)\)

e) \(a-b=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)

f) \(a-4=\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)\)

g) \(3-x=\left(\sqrt{3}-\sqrt{x}\right)\left(\sqrt{3}+\sqrt{x}\right)\)

Rút gọn

a) \(\dfrac{a}{b}\sqrt{\dfrac{a^2}{b^4}}=\dfrac{a}{b}.\dfrac{a}{b^2}=\dfrac{a^2}{b^3}\)

b) Ta có b<0\(\Rightarrow\sqrt{b^2}=-b\)

\(2a^2\sqrt{\dfrac{b^2}{4a^2}}=\dfrac{2a^2.\left(-b\right)}{2a}=-ab\)

13 tháng 5 2021

a) ab2.3a2b4=ab2.3a2b4ab2.3a2b4=ab2.3a2b4

=ab2.3a2.b4=ab2.3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|

=ab2.3(a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=a|a|=−a và b0b≠0 nên b2>0b2>0   b2=b2|b2|=b2)

=3=−3.

b) 27(a3)248=9(a3)21627(a−3)248=9(a−3)216

=9.(a3)216=3.|a3|4=9.(a−3)216=3.|a−3|4

=3(a3)4=3(a−3)4

(Do a>3a>3 nên |a3|=a3|a−3|=a−3)

c) 9+12a+4a2b2=32+2.3.2a+(2a)2b29+12a+4a2b2=32+2.3.2a+(2a)2b2

=(3+2a)2b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2ab=2a+3b=3+2a−b=−2a+3b.

(Do a1,5a≥−1,5  3+2a03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=b|b|=−b)

d) (ab).ab(ab)2=(ab).ab(ab)2(a−b).ab(a−b)2=(a−b).ab(a−b)2

=(ab).ab|ab|=(ab).ab(ab)=(a−b).ab|a−b|=(a−b).ab−(a−b)

=ab=−ab.

(Do a<b<0a<b<0 nên |ab|=(ab)|a−b|=−(a−b) và ab>0ab>0)

13 tháng 5 2021

a) ab2.3a2b4=ab2.3a2b4ab2.3a2b4=ab2.3a2b4

=ab2.3a2.b4=ab2.3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|

=ab2.3(a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=a|a|=−a và b0b≠0 nên b2>0b2>0   b2=b2|b2|=b2)

=3=−3.

b) 27(a3)248=9(a3)21627(a−3)248=9(a−3)216

=9.(a3)216=3.|a3|4=9.(a−3)216=3.|a−3|4

=3(a3)4=3(a−3)4

(Do a>3a>3 nên |a3|=a3|a−3|=a−3)

c) 9+12a+4a2b2=32+2.3.2a+(2a)2b29+12a+4a2b2=32+2.3.2a+(2a)2b2

=(3+2a)2b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2ab=2a+3b=3+2a−b=−2a+3b.

(Do a1,5a≥−1,5  3+2a03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=b|b|=−b)

d) (ab).ab(ab)2=(ab).ab(ab)2(a−b).ab(a−b)2=(a−b).ab(a−b)2

=(ab).ab|ab|=(ab).ab(ab)=(a−b).ab|a−b|=(a−b).ab−(a−b)

=ab=−ab.

(Do a<b<0a<b<0 nên |ab|=(ab)|a−b|=−(a−b) và ab>0ab>0)