Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A= (4x2 + y2).[(2x)2 - y2] = (4x2 +y2)(4x2 - y2) = (4x2)2 _ (y2)2 = 16x4 - y4

a) sai đề sửu lại
\(-9x^2+12x-15=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\)
Vì: \(-\left(3x-2\right)^2\le0\)
=> \(-\left(3x-2\right)^2-11< 0\)
=>đpcm
b) \(-10-\left(x-1\right)\left(x+2\right)=-10-x^2-2x+x+2=-\left(x^2+x+\frac{1}{4}\right)-\frac{31}{4}=-\left(x+\frac{1}{2}\right)^2-\frac{31}{4}\)
Vì: \(-\left(x+\frac{1}{2}\right)^2\le0\)
=> \(-\left(x+\frac{1}{2}\right)^2-\frac{31}{4}< 0\)
=>đpcm
c) \(-x^2+x-2=-\left(x^2-x+\frac{1}{4}\right)-\frac{7}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{7}{4}\)
Vì: \(-\left(x-\frac{1}{2}\right)^2\le0\)
=> \(-\left(x-\frac{1}{2}\right)^2-\frac{7}{4}< 0\)
=>đpcm

a) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left[x^2+\left(a+b\right)x+ab\right]\left(x+c\right)\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
c) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-bc^2\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ca\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Nhầm đoạn cuối là \(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Mình mới học lớp 6
Nên không biết nha
Chúc các bạn học giỏi
1,\(\left(a^2+b^2-c^2\right)^2\)\(-\left(a^2-b^2+c^2\right)^2\)
\(=\left(a^2+b^2-c^2\right)^2\)\(-\left(b^2-a^2-c^2\right)^2\)
\(=\left(a^2+b^2-c^2-b^2+a^2+c^2\right)\)\(\left(a^2+b^2-c^2+b^2-a^2-c^2\right)\)
\(=2a^2\left(2b^2-2c^2\right)\)
\(=4a^2b^2-4a^2c^2\)
\(=\left(2ab-2ac\right)\left(2ab+2ac\right)\)
2,\(\left(a+b+c\right)^2\)\(+\left(a+b-c\right)^2\)\(-2\left(a+b\right)^2\)
\(=\left(\left(a+b+c\right)^2-\left(a+b\right)^2\right)\)\(+\left(\left(a+b-c\right)^2-\left(a+b\right)^2\right)\)
\(=\left(a+b+c-a-b\right)\)\(\left(a+b+c+a+b\right)+\)\(\left(a+b-c-a-b\right)\)\(\left(a+b-c+a+b\right)\)
\(=c\left(2a+2b+c\right)\)\(-c\left(2a+2b-c\right)\)
\(=c\left(2a+2b+c-2a-2b+c\right)\)
\(=c.2c\)
\(=2c^2\)