
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=1+2+1^2+\cdots+2^{25}\)
\(A=1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+9^2+10^2+11^2+12^2+13^2+14^2+15^2+16^2+13^2+14^2+15^2+16^2+17^2+18^2+19^2+20^2\)
\(A=1^2+2^2+3^2+\cdots+20^2\)
\(A=\frac{25.26.\left(2.25+1\right)}{6}\)
\(A=\frac{25.26.51}{6}\)
\(A=\frac{33150}{6}\)
\(A=5525\)

Ta có : \(C=1+2^2+2^4+...+2^{100}\)
\(C.2^2=2^2\left(1+2^2+2^4+...+2^{100}\right)\)
\(C.4=2^2+2^4+2^6+...+2^{102}\)
\(C.4-C=2^{102}-1\)
\(C.3=2^{102}-1\)
\(C=\frac{2^{102}-1}{3}\)

\(a,3^{n+2}-3^{n+1}+6.3^n\)
\(=3^n\left(3^2-3+6\right)=3^n.12\)
\(b,\left(3.2^{n+2}+2^n+2^{n+1}\right):5\)
\(=\left[2^n\left(3.2^2+1+2\right)\right]:5\)
\(=2^n.15:5\)
\(=2^n.3\)

1) Đặt \(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3D=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3D-D=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Leftrightarrow2D=1-\frac{1}{3^{100}}\)
\(\Leftrightarrow D=\frac{3^{100}-1}{2\cdot3^{100}}\)
Vậy \(D=\frac{3^{100}-1}{2\cdot3^{100}}\)
2) Ta có: \(\frac{49}{58}\cdot\frac{2^5}{4^2}-\frac{7^2}{-58}\cdot3\)
\(=\frac{49}{58}\cdot2-\frac{49}{58}\cdot3\)
\(=-1\cdot\frac{49}{58}\)
\(=-\frac{49}{58}\)
2A=\(2+2^2+2^3+...+2^{101}\)
\(A=1+2+2^2+...+2^{100}\)
\(\Rightarrow\) A=\(2^{101}-1\)
Đơn giản như vậy thôi