Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Công thức: số đt=n(n-1)/2 n là số điểm a)Số đt vẽ đc là: 101(101-1)/2=101.100/2=5050 b) Có 105 đt =>105=n(n-1)/2 n(n-1)=105.2=210 Mà 14.15=210
=>n=15 hay số điểm là 15

Bài 1:
a; Kẻ được số đường thẳng là: 3 đường thẳng
b Đó là các đường thẳng:
AD; BD; CD
c; D là giao của đường thẳng: AD và BD; BD và CD

a: Số điểm còn lại là 20-6=14(điểm)
TH1: Chọn 1 điểm trong 6 điểm thẳng hàng; chọn 1 điểm trong 14 điểm không thẳng hàng
Số đường thẳng vẽ được là \(6\cdot14=84\) (đường)
TH2: Chọn 2 điểm bất kì trong 14 điểm không thẳng hàng
Số đường thẳng vẽ được là: \(\frac{14\left(14-1\right)}{2}=14\cdot\frac{13}{2}=7\cdot13=91\) (đường)
TH3: Chọn 2 điểm bất kì trong 6 điểm thẳng hàng
=>Số đường thẳng vẽ được là 1 đường thẳng
Tổng số đường thẳng vẽ được là:
84+91+1=176(đường)
b: Số điểm còn lại là n-7(điểm)
TH1: Chọn 1 điểm trong 7 điểm thẳng hàng; chọn 1 điểm trong n-7 điểm không thẳng hàng
Số đường thẳng vẽ được là 7(n-7)(đường)
TH2: Chọn 2 điểm trong n-7 điểm không thẳng hàng
Số đường thẳng vẽ được là: \(\frac{\left(n-7\right)\left(n-7-1\right)}{2}=\frac{\left(n-7\right)\left(n-8\right)}{2}\) (đường)
TH3: Chọn 2 điểm trong 7 điểm thẳng
=>Số đường thẳng vẽ được là 1 đường
Tổng số đường thẳng vẽ được là 211 đường nên ta có:
\(7\left(n-7\right)+\frac{\left(n-7\right)\left(n-8\right)}{2}+1=211\)
=>\(\frac{14\left(n-7\right)+\left(n-7\right)\left(n-8\right)}{2}=210\)
=>14(n-7)+(n-7)(n-8)=420
=>(n-7)(n+6)=420
=>\(n^2-n-42-420=0\)
=>\(n^2-n-462=0\)
=>(n-22)(n+21)=0
=>\(\left[\begin{array}{l}n-22=0\\ n+21=0\end{array}\right.\Rightarrow\left[\begin{array}{l}n=22\left(nhận\right)\\ n=-21\left(loại\right)\end{array}\right.\)
vậy: n=22
a, Khi có 20 điểm phân biệt, trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là 20.(20−1)2=10.19=190(đường thẳng).
Tuy nhiên trong 20 điểm phân biệt đó có đúng 6 điểm thẳng hàng đã được tính là không có ba điểm nào thẳng hàng.
+ Nếu trong 6 điểm không có ba điểm nào thẳng hàng thì số đường thẳng kẻ được đi qua 2 điểm trong 6 điểm đó là 6.52=15(đường thẳng).
+ Nếu 6 điểm thẳng hàng thì chỉ có duy nhất 1 đường thẳng đi qua 6 điểm đó.
Do đó số đường thằng đi qua 6 điểm thằng hàng đã được tính thành 15 đường, tuy nhiên thực tế chỉ có 1 đường.
Vì vậy, với 20 điểm phân biệt trong đó có đúng 6 điểm thẳng hàng, ngoài ra không có 3 điểm nào khác thẳng hàng thì số đường thẳng kẻ được là:
190 – 15 + 1 = 176(đường thẳng).
Vậy vẽ được 176 đường thẳng từ 20 điểm đó.
b
Khi có n điểm phân biệt, trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là n(n−1)2 (đường thẳng).
Tuy nhiên trong n điểm phân biệt đó có đúng 7 điểm thẳng hàng đã được tính là không có ba điểm nào thẳng hàng.
+ Nếu trong 7 điểm không có ba điểm nào thẳng hàng thì số đường thẳng kẻ được đi qua 2 điểm trong 7 điểm đó là 7.62=21(đường thẳng).
+ Nếu 7 điểm thẳng hàng thì chỉ có duy nhất 1 đường thẳng đi qua 7 điểm đó.
Do đó số đường thằng đi qua 7 điểm thằng hàng đã được tính thành 21 đường, tuy nhiên thực tế chỉ có 1 đường.
Vì vậy, với n điểm phân biệt trong đó có đúng 7 điểm thẳng hàng, ngoài ra không có 3 điểm nào khác thẳng hàng thì số đường thẳng kẻ được là:
n(n−1)2−21+1=n(n−1)2−20 (đường thẳng).
Mà có tất cả 211 đường thẳng
Do đó n(n−1)2−20=211
Hay n(n−1)2=231
Nên n(n – 1) = 462 = 22 . 21
Suy ra n = 22
Vậy có 22 điểm phân biệt.

a, vẽ được số đường thẳng là : 6.(6-1):2=15(đường thẳng )
b. qua 3 điểm thẳng không hàng ta có 3 đường thẳng. Nếu 3 điểm thẳng hàng qua chúng chỉ có 1 đường thẳng
số đường thẳng giảm đi : 3 - 1 = 2 ( đường thẳng )
vậy có tất cả : 15-2=13(đường thẳng)
mình học bài nay rồi nên chắc chắn đúng đấy nhé tick nhé!

Giải bài toán:
a) Trường hợp 12 điểm
• Mỗi đường thẳng được tạo thành bởi một cặp điểm.
• Số cách chọn 2 điểm từ 12 điểm là:
C(12,2) = \frac{12!}{2!(12-2)!} = \frac{12 \times 11}{2} = 66
Vậy có 66 đường thẳng.
b) Trường hợp n điểm
• Tương tự, số đường thẳng là số cách chọn 2 điểm từ n điểm, tức là:
C(n,2) = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2}
Vậy với n điểm không thẳng hàng, ta vẽ được \frac{n(n-1)}{2} đường thẳng

Chọn 1 điểm trong 5 điểm đã cho.
Qua điểm này và 4 điểm còn lại , ta vẽ được 4 đường thẳng.
Mà 5 điểm đã cho đều có thể làm được như vậy nên số đường thẳng vẽ được là: 4.5=20(đường thẳng)
Nhưng như vậy , mỗi đường thẳng lại được tính 2 lần nên số đường thẳng vẽ được từ 5 điểm đã cho là:
20:2=10 ( đường thẳng )
Vậy ...
_HT_