Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) y = x3 + 3x2 + 1
Tập xác định: D = R
y’= 3x2 + 6x = 3x(x+ 2)
y’=0 ⇔ x = 0, x = -2
Bảng biến thiên:
Đồ thị hàm số:
b) Số nghiệm của phương trình \(x^3+3x^2+1=\dfrac{m}{2}\) chính là số giao điểm của (C) và đường thẳng (d): \(y=\dfrac{m}{2}\) (đường thẳng (d) vuông góc với Oy và cắt Oy tại \(\dfrac{m}{2}\) )
Từ đồ thị ta thấy:
- Với \(\dfrac{m}{2}< 1\Leftrightarrow m< 2\) : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm
- Với \(\dfrac{m}{2}=1\Leftrightarrow m=2\) : (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm.
- Với \(1< \dfrac{m}{2}< 5\)\(\Leftrightarrow2< m< 10\)
- Với \(\dfrac{m}{2}=5\Leftrightarrow m=10\): (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.
- Với \(\dfrac{m}{2}>5\Leftrightarrow m>10\): (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm
c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).
Đường thẳng đi qua hai điểm này có phương trình là: 1\(y-14=x-2\Leftrightarrow y=x+12\).
a) y = x3 + 3x2 + 1
Tập xác định: D = R
y’= 3x2 + 6x = 3x(x+ 2)
y’=0 ⇔ x = 0, x = -2
Bảng biến thiên:
Đồ thị hàm số:
b) Số nghiệm của phương trình x^3+3x^2+1=m/2chính là số giao điểm của (C) và đường thẳng (d): y=m/2 (đường thẳng (d) vuông góc với Oy và cắt Oy tại )
Từ đồ thị ta thấy:
- Với m/2<1⇔m<2: (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm
- Với m/2=1⇔ m = 2: (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm
- Với 1<m/2<5⇔ 2<m
- Với m/2=5⇔m=10: (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.
- Với m/2>5⇔m>10 : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm
c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).
Đường thẳng đi qua hai điểm này có phương trình là: y−14=x−2⇔y=−2x+1

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)
Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)
\(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)
Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)
=> Các điểm cực trị là :
\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)
Gọi I là giao điểm của hai đường thẳng d và d' :
\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)
A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)
Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d
Vậy m = 0 là giá trị cần tìm

1.
Pt hoành độ giao điểm: \(\frac{2x-3}{x+3}=x-1\)
\(\Leftrightarrow2x-3=x^2+2x-3\)
\(\Leftrightarrow x=0\Rightarrow y=-1\)
Vậy tung độ giao điểm là \(-1\)
2.
\(y'=4x^3+4x\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=8\\y\left(1\right)=3\end{matrix}\right.\)
Pttt: \(y=8\left(x-1\right)+3=8x-5\)
3.
\(y'=3x^2-6x\)
Lấy y chia y' và lấy phần dư ta được pt đường thẳng là: \(y=-2x+1\)

Bài 1:
ĐTHS \(y=x^3+3mx+1\) có hai điểm cực trị khi \(y'=3x^2+3m=0\Leftrightarrow x^2+m=0\) có hai nghiệm phân biệt \(\Leftrightarrow m<0\)
Hoành độ của hai điểm cực trị chính là hai nghiệm của PT \(x^2+m=0\)
Khi đó ta có \(y=x^3+3mx+1=x(x^2+m)+2mx+1=2mx+1\)
Do đó \(d: y=2xm+1\) là đường thẳng đi qua hai điểm cực trị
\(\Rightarrow d(M,d)=\frac{|1-3|}{\sqrt{(2m)^2+1}}=\frac{2}{\sqrt{5}}\Leftrightarrow m^2=1\rightarrow m=-1\) (do \(m<0\))
Vậy $m=-1$
Bài 2:
ĐTHS trên có hai điểm cực trị khi \(y'=6x^2+6(m-1)x+6(m-2)=0\)
\(\Leftrightarrow 6[x+(m-2)](x+1)=0\) có hai nghiệm phân biệt.
Khi đó, chỉ cần \(m\neq 3\)
Từ pt trên ta thu được hai nghiệm \(x=2-m;x=-1\)
Điểm CĐ và CT nằm trong khoảng \((-2,3)\) suy ra
\(\left\{\begin{matrix} -1\in (-2;3)\\ 2-m\in (-2;3)\end{matrix}\right.\Leftrightarrow 4>m>-1\)
Vậy \(4>m>-1\) và \(m\neq 3\)
Bài 3:
Ta có \(y'=x^2-2(m+1)x+2m+1=0\)
\(\Leftrightarrow [x-(2m+1)](x-1)=0\)
ĐTHS có cực trị khi PT trên có hai nghiệm phân biệt, tức là \(m\neq 0\)
Khi đó, hai nghiệm thu được là \(1\) và \(2m+1\) .
Hiển nhiên các điểm cực trị của ĐTHS là \((1;m-1);\left(2m+1,\frac{-4m^3}{3}+m-1\right)\)
Điểm cực trị của ĐTHS thuộc trục hoành thì tung độ bằng $0$
Nếu \((1;m-1)\) là điểm cực đại thì \(\left\{\begin{matrix} m-1=0\\ m-1>\frac{-4m^3}{3}+m-1\end{matrix}\right.\Rightarrow m=1\)
Nếu \(\left (2m+1,\frac{-4m^3}{3}+m-1\right)\) là điểm cực đại thì
\(\left\{\begin{matrix} \frac{-4}{3}m^3+m-1=0\\ m-1<\frac{-4m^3}{3}+m-1\end{matrix}\right.\Rightarrow m<0\) (không thỏa mãn)
Vậy $m=1$

Hai điểm cực trị của \(\left(C_1\right)\) là : \(A\left(0;3\right);B\left(2;-1\right)\Rightarrow\overrightarrow{AB}=\left(2;-4\right)\)
Phương trình AB : \(2x+y-3=0\)
Ta có : \(y'=3x^2-6mx+3\left(m-1\right)\)
\(x_0=1\Rightarrow y_0=2m-1;y'\left(x_0\right)=-3m\)
Phương trình tiếp tuyến \(\Delta:y=-3m\left(x-1\right)+2m-1\)
hay \(3mx+y-5m+1=0\)
Yêu cầu bài toán \(\Leftrightarrow\cos\left(AB;\Delta\right)=\cos60^0=\frac{1}{2}\)
\(\Leftrightarrow\frac{\left|6m+1\right|}{\sqrt{5\left(9m^2+1\right)}}=\frac{1}{2}\Leftrightarrow4\left(6m+1\right)^2=5\left(9m^2+1\right)\)
\(\Leftrightarrow99m^2+48m-1=0\)
\(\Leftrightarrow m=\frac{-8\pm5\sqrt{3}}{33}\) là những giá trị cần tìm