
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: ta có: \(\hat{xAB}+\hat{yBA}=45^0+135^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Ax//By
b: Gọi BM là tia đối của tia By
Khi đó, ta có: \(\hat{MBA}+\hat{yBA}=180^0\) (hai góc kề bù)
=>\(\hat{MBA}=180^0-135^0=45^0\)
Ta có: tia BM nằm giữa hai tia BA và BC
=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)
=>\(\hat{CBM}=75^0-45^0=30^0\)
Ta có: \(\hat{MBC}=\hat{BCz}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên By//Cz

kẻ RH sao cho H đối diện với R qua O
ta có: ∠POH = 180⁰ - ∠ROP = 180⁰ - 110⁰ = 70⁰
∠NOH = 180⁰ - ∠RON = 180⁰ - 130⁰ = 50⁰
∠NOP = ∠POH + ∠NOH = 70⁰ + 50⁰ = 120⁰
⇒ ∠NOP = ∠OPQ = 120⁰
mà 2 góc này ở vị trí so le trong
⇒ PQ // NQ

a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)
=>\(\hat{tKm}=180^0-150^0=30^0\)
Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Nz//Km
b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)
=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)
Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ky//Mn

a: Ta có: \(\hat{CAD}=\hat{ADE}\left(=55^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//DE
b: ta có: \(\hat{AFB}=\hat{ADC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên BE//CD

a: Ta có: tia CA nằm giữa hai tia CB và CD
=>\(\hat{BCD}=\hat{BCA}+\hat{DCA}=80^0+30^0=110^0\)
ta có: \(\hat{BCD}+\hat{CBA}=110^0+70^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
b: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)
=>\(\hat{BAC}=80^0\)


Gọi \(x\) là số quả táo của mỗi người ban đầu.
*Giá bán dự kiến của A là 10 000 đồng/3 quả, tức mỗi quả \(\frac{10 \textrm{ } 000}{3}\) đồng
*Giá bán dự kiến của B là 10 000 đồng/2 quả, tức mỗi quả 5 000 đồng.
+, Nếu bán riêng, số tiền dự kiến của cả hai là \(\frac{10 \textrm{ } 000}{3} x + 5 \textrm{ } 000 x\).
Khi B bán chung cả 2 loại táo với giá 20 000 đồng/5 quả, tức 4 000 đồng/quả, tổng số quả là \(2 x\) nên số tiền thực tế thu được là \(8 \textrm{ } 000 x\). Theo đề, số tiền thực tế ít hơn dự kiến 15 000 đồng nên ta có phương trình là:
\(\frac{10 \textrm{ } 000}{3} x + 5 \textrm{ } 000 x - 8 \textrm{ } 000 x = 15 \textrm{ } 000\)
=> \(x = 45\). Mỗi người có 45 quả, khi bán chung giá 4 000 đồng/quả, mỗi người nhận \(45 \times 4 \textrm{ } 000 = 180 \textrm{ } 000\) đồng. Vậy số tiền B thu nhiều hơn A là \(0\) đồng.

Đề tóm tắt:
- Tổng chi phí xây cầu: 340 triệu.
- Đơn vị 1: 8 xe, cách 1,5 km.
- Đơn vị 2: 5 xe, cách 3 km.
- Đơn vị 3: 4 xe, cách 1 km.
- Số tiền mỗi đơn vị đóng tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảng cách.
Bước 1: Xác định "trọng số" của từng đơn vị
Công thức:
\(S \overset{ˊ}{\hat{o}} \&\text{nbsp}; t i \overset{ˋ}{\hat{e}} n \propto \frac{S \overset{ˊ}{\hat{o}} \&\text{nbsp}; x e}{K h o ả n g \&\text{nbsp}; c \overset{ˊ}{a} c h}\)
- Đơn vị 1: \(\frac{8}{1 , 5} = \frac{16}{3} \approx 5 , 33\).
- Đơn vị 2: \(\frac{5}{3} \approx 1 , 67\).
- Đơn vị 3: \(\frac{4}{1} = 4\).
Bước 2: Tổng hệ số
\(\frac{16}{3} + \frac{5}{3} + 4 = \frac{16 + 5}{3} + 4 = 7 + 4 = 11.\)
Bước 3: Phân chia số tiền
Tổng 340 triệu ứng với 11 phần.
→ Mỗi phần:
\(\frac{340}{11} \approx 30 , 91 \&\text{nbsp};\text{tri}ệ\text{u} .\)
- Đơn vị 1: \(\frac{16}{3} \times 30 , 91 \approx 164 , 85 \&\text{nbsp};\text{tri}ệ\text{u}\).
- Đơn vị 2: \(\frac{5}{3} \times 30 , 91 \approx 51 , 52 \&\text{nbsp};\text{tri}ệ\text{u}\).
- Đơn vị 3: \(4 \times 30 , 91 \approx 123 , 64 \&\text{nbsp};\text{tri}ệ\text{u}\).
✅ Kết quả:
- Đơn vị 1: khoảng 164,85 triệu đồng.
- Đơn vị 2: khoảng 51,52 triệu đồng.
- Đơn vị 3: khoảng 123,64 triệu đồng.
(Tổng đúng 340 triệu đồng).

Gọi ba phần được chia lần lượt là x,y,z
Ba phần được chia theo tỉ lệ là \(0,5:1\frac23:2\frac14=\frac12:\frac53:\frac94\) nên \(\frac{x}{\frac12}=\frac{y}{\frac53}=\frac{z}{\frac94}\)
Đặt \(\frac{x}{\frac12}=\frac{y}{\frac53}=\frac{z}{\frac94}=k\)
=>\(x=\frac12k;y=\frac53k;z=\frac94k\)
Tổng bình phương của ba phần được chia là 4660 nên ta có:
\(x^2+y^2+z^2=4660\)
=>\(\left(\frac12k\right)^2+\left(\frac53k\right)^2+\left(\frac94k\right)^2=4660\)
=>\(\frac14k^2+\frac{25}{9}k^2+\frac{81}{16}k^2=4660\)
=>\(k^2=576\)
=>\(\left[\begin{array}{l}k=24\\ k=-24\end{array}\right.\)
TH1: k=24
=>\(\begin{cases}x=\frac12\cdot24=12\\ y=\frac53\cdot24=40\\ z=\frac94\cdot24=54\end{cases}\)
A=x+y+z=12+40+54=62+54=116
TH2: k=-24
=>\(\begin{cases}x=\frac12\cdot\left(-24\right)=12\\ y=\frac53\cdot\left(-24\right)=40\\ z=\frac94\cdot\left(-24\right)=54\end{cases}\)
A=x+y+z=-12-40-54=-116
a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)
=>\(\hat{tKm}=180^0-150^0=30^0\)
Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Nz//Km
b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)
=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)
Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ky//Mn