![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta cộng (trừ) 2 hệ số cho nhau và giữ nguyên phần biến.
VD:6x2+3x2=(6+3)x2=9x2
![](https://rs.olm.vn/images/avt/0.png?1311)
Cộng – trừ các đơn thức đồng dạng, ta Cộng (trừ) các hệ số với nhau và giữ nguyên phần biến.
![](https://rs.olm.vn/images/avt/0.png?1311)
2. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến. Ví dụ: 2x3y2,...
3. Để cộng (hay trừ) ác đơn thức đồng dạng, ta cộng ( hay trừ ) các hệ số với nhau và giữ nguyên phần biến.
4. Khi đa thức P (x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức đó.
Câu 1 mình không biết.
Câu 1:
2x^3y^2
3x^6y^3
4x^5y^9
6x^8y^3
7x^4y^8
Câu 2:
Hai đơnthức đồng dạng là hai đơn thức có hệ số khác không và cùng phần biến
VD:
2xyz^3 và 3xyz^3
Câu 3:
Để cộng trừ hai đơn thức đồng dạng ta giữ nguyên phần biến và cộng trừ phần hệ số
Câu 4:
Số a được gọi là nghiệm của đa thức khi
Nếu tại x=a đa thức p(x) có giá trị bằng không thì ta nói a là một nghiệm của đa thức p(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
a) - Để công, trừ các đơn thức đồng dạng, ta cộng ( hoặc trừ) các hệ số với nhau và giữ nguyên phần biến
b) \(\frac{1}{2}x^3y+\frac{3}{2}x^3y-5x^3y\)
\(=\left(\frac{1}{2}+\frac{3}{2}-5\right)x^3y\)
\(=-3x^3y\)
a,Cộng trừ các đơn thức đồng dạng ta cộng trừ các hệ số với nhau và giữ nguyên phần biến.
b,\(\frac{1}{2x3y}+\frac{3}{2x3y}-5x^3y=\frac{4}{2x3y}-5x^3y\)
\(\Rightarrow\frac{4-5x^3y.2x3y}{2x3y}=\frac{4-10x^43y^2}{2x3y}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
* Phát biểu quy tắc cộng trừ của đa thức vs đơn thức + điều kiện
- Quy tắc
Bước 1: Đặt phép toán bằng cách viết liên tiếp các hạng tử của hai đa thức đó cùng với dấu của chúng.
Bước 2: Áp dụng phép bỏ dấu ngoặc, tính chất giao hoán, kết hợp để biến đổi và thu gọn các hạng tử đồng dạng.
* Phát biểu quy tắc nhân chia đa thức với đơn thức + điều kiện:
- Quy tắc:
Muốn nhân một đơn thức với một đa thức ta nhân đơn thức với từng số hạng của đa thức rồi cộng các tích với nhau.
Muốn chia đa thức A cho đơn thức B (trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B), ta chia mỗi hạng tử của A cho B rồi cộng các kết quả với nhau.
![](https://rs.olm.vn/images/avt/0.png?1311)
1. 5 đơn thức:
\(2x^2y^3\); \(3x^3y^4\); \(x^5y^6\); \(4xy^2\); \(5x^7y\)
2. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.
VD: \(2x^2y^3z^4\) và \(\dfrac{1}{2}x^2y^3z^4\)
3. Quy tắc cộng, trừ hai đơn thức đồng dạng:
Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
4. Nếu tại x = a, đa thức P(x) có giá trị bằng 0 thì ta nói a (hoặc x = a) là một nghiệm của đa thức đó.
2.Định nghĩa: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.
VD: 2x2y3 và -52y3
3.Quy tắc: Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
4.Cho đa thức P(x)
Nếu tại x = a đa thức P(x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức P(x).
Để cộng (hay trừ) hai đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.