
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Q = 3xy(x + 3y) - 2xy(x + 4y) - x²(y - 1) + y²(1 - x) + 36
= 3x²y + 9xy² - 2x²y - 8xy² - x²y + x² + y² - xy² + 36
= (3x²y - 2x²y - x²y) + (9xy² - 8xy² - xy²) + x² + y² + 36
= x² + y² + 36
b) Do x² ≥ 0 với mọi x ∈ R
y² ≥ 0 với mọi x ∈ R
Q = x² + y² + 36 ≥ 36 với mọi x ∈ R
Q nhỏ nhất khi x² + y² = 0
⇒ x = y = 0
Vậy x = y = 0 thì Q nhỏ nhất và giá trị nhỏ nhất của Q là 36

1)We have: \(a-b=8\)
\(\Rightarrow\left(a-b\right)^2=64\)
\(\Rightarrow a^2-2ab+b^2=64\)
\(\Rightarrow a^2+2ab+b^2-4ab=64\)
\(\Rightarrow\left(a+b\right)^2=64+4ab=64+4\cdot10=64+40=104\)
Hence: \(\left(a+b\right)^2=104\)
2)We have: \(a+b=8\)
\(\Rightarrow\left(a+b\right)^2=64\)
\(\Rightarrow a^2+2ab+b^2=64\)
\(\Rightarrow a^2-2ab+b^2+4ab=64\)
\(\Rightarrow\left(a-b\right)^2=64-4ab=64-4\cdot10=64-40=24\)
Hence \(\left(a-b\right)^2=24\)

\(\frac{x-1}{x^2-1}=\frac{x-1}{\left(x-1\right)\left(x+1\right)}=\frac{1}{x+1}\)
Vậy a=1 đó
ủa mũ hay để nguyên z??
mũ ạ