
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=\sqrt[3]{\left(\frac{1}{2}+\frac{1}{2}\sqrt{13}\right)^3}+\sqrt[3]{\left(\frac{1}{2}-\frac{1}{2}\sqrt{13}\right)^3}\)
\(=\frac{1}{2}+\frac{\sqrt{13}}{2}+\frac{1}{2}-\frac{\sqrt{13}}{2}=1\)
\(B=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}=2+\sqrt{2}+2-\sqrt{2}=4\)


ĐKXĐ: ...
\(VT=\sqrt{14-x}+\sqrt{x-12}\le\sqrt{2\left(14-x+x-12\right)}=2\)
\(VP=\left(x-13\right)^2+2\ge2\)
\(\Rightarrow VP\ge VT\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}14-x=x-12\\x-13=0\end{matrix}\right.\) \(\Rightarrow x=13\)
Vậy pt có nghiệm duy nhất \(x=13\)

Ta có: \(\left(\sqrt{14}+\sqrt{10}\right)\sqrt{6-\sqrt{35}}-2\)
\(=\sqrt{2}\cdot\left(\sqrt{7}+\sqrt{5}\right)\sqrt{6-\sqrt{35}}-2\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\sqrt{12-2\sqrt{35}}-2\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\sqrt{7-2\sqrt{35}+5}-2\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}-2\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)-2\)
\(=7-5-2\)
\(=0\)
\(\sqrt{12-2\sqrt{14+2\sqrt{13}}}\)
\(=\sqrt{12-2\sqrt{\left(\sqrt{13}\right)^2+2\sqrt{13}+1}}\)
\(=\sqrt{12-2\sqrt{\left(\sqrt{13}+1\right)^2}}\)
\(=\sqrt{12-2.\left|\sqrt{13}+1\right|}\)
\(=\sqrt{12-2\left(\sqrt{13}+1\right)}\)
\(=\sqrt{12-2\sqrt{13}+2}\)
\(=\sqrt{14+2\sqrt{13}}\)
\(=\sqrt{\left(\sqrt{13}\right)^2+2\sqrt{13}+1}\)
\(=\sqrt{\left(\sqrt{13}+1\right)^2}\)
\(=\left|\sqrt{13}+1\right|\)
\(=\sqrt{13}+1\) ( vi \(\sqrt{13}+1>0\))