Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(255=5\cdot51=5\cdot3\cdot17\)
b: \(630=63\cdot10=3^2\cdot7\cdot2\cdot5\)

Giải:
Ta phân tích số 2100:
\(2100=23.3.7.52\)
=>Số 2100 chia hết cho các số nguyên tố \(2;3;5;7\)
Vì \(2100=2^2.3.5^5.7\)
nên 2100 chia hết các thừa số nguyên tố là 2;3;5;7

Ta có công thức: \(ab=\left(a,b\right).\left[a,b\right]\).
Áp dụng ta được:
Có \(120.200=24000\), \(BCNN\left(120,200\right)=600\)
suy ra \(ƯCLN\left(120,200\right)=\frac{24000}{600}=40\).

Ta có:
312= 23 x 3 x 13
Vậy thừa số nguyên tố nhỏ nhất trong phân tích 312 thành tích các thừa số nguyên tố là 2
312= 23 x 3 x 13
Vậy thừa số nguyên tố nhỏ nhất trong phân tích 312 thành tích các thừa số nguyên tố là 2


a: \(255=5\cdot51=5\cdot3\cdot17\)
b: \(630=63\cdot10=3^2\cdot7\cdot2\cdot5\)
c,ơn ạ