![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz
=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz
=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz
=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3
=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]
=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)
=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]
=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]
=(x+y+z)(x-y-z)(z-x-y)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)
b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)
\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)
đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha
c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)
d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.
có gì liên hệ chị. đúng nha ;)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3-x+y^3-y\)
\(=x^3+y^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
\(x^3-x+y^3-y\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3+\frac{1}{x^3}=x^3+\left(\frac{1}{x}\right)^3=\left(x+\frac{1}{x}\right)\left(x^2-x+\frac{1}{x^2}\right)\)( x khác 0 )
\(-x^3+9x^2-27x+27=-\left(x^3-9x^2+27x-27\right)=-\left(x-3\right)^3\)
\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-y^2-4x-2y+3\)
\(=\left(x^2-4x+4\right)-\left(y^2+2y+1\right)\)
\(=\left(x-2\right)^2-\left(y+1\right)^2\)
\(=\left(x-2-y-1\right)\left(x-2+y+1\right)\)
\(=\left(x-y-3\right)\left(x+y-1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a bạn xét giá trị riêng nha
A=x2(y-z) + y2(z-x) + z2(x-y)
Thay x bởi y, ta có
A= y2 (y-z) + y2(z-y) + z2(y-y) = 0
=> A chứa nhân tử x-y
Tương tự A chứa nhân tử y-z, z-x
=> A có tích (x-y)(y-z)(z-x)
Ta thấy biểu thức A có bậc 3, tích (x-y)(y-z)(z-x) cũng có bậc là 3 nên A có dạng tổng quát: A= k(x-y)(y-z)(z-x) ( k thuộc R)
Ta có đẳng thức : x2(x-y) + y2(z-x) +z2( x-y) = k(x-y)(y-z)(z-x) với mọi x,y,z
Cho x=0,y=1,z=2 => -2 = 2k => k=-1
Vậy A= -(x-y)(y-z)(z-x)
b) a7 + a +1 = a7 + a6 - a6 - a5 +a5 + a4 -a4 - a3 + a3 + a2 +a +1
= a6 (a+1) - a5 (a+1) +a4 (a+1) -a3 (a+1) +a2(a+1) +(a+1)
=(a+1)( a6 - a5 + a4 - a3 + a2 +1)
![](https://rs.olm.vn/images/avt/0.png?1311)
x6+3x4y2-8x3y3+3x2y4+y6= x6+3x4y2+3x2y4+y6-8x3y3=(x2+y2)3-(2xy)3
= (x2+y2-2xy)[(x2+y2)2+2xy(x2+y2)+(2xy)2]= (x-y)2(x4+6x2y2+y4+2x3y+2xy3)
(x2+y2-5)2-4x2y2-16xy-16=(x2+y2-5)2-(4x2y2+16xy+16)=(x2+y2-5)2-(2xy+4)2
=(x2+y2-5+2xy+4)(x2+y2-5-2xy-4)=(x2+2xy+y2-1)(x2-2xy+y2-9)=[(x+y)2-1][(x-y)2-32]=(x+y-1)(x+y+1)(x-y-3)(x-y+3)
x4+324=x4+36x2+324-36x2=(x2+18)2-(6x)2=(x2+18-6x)(x2+18+6x)
Ta có: \(x^3-\left(y-2\right)^3+\left(y-x-2\right)^2\)
\(=\left(x-y+2\right)\left(x^2+xy-2x+y^2-4y+4\right)+\left(x-y+2\right)^2\)
\(=\left(x-y+2\right)\left(x^2+xy-2x+y^2-4y+4+x-y+2\right)\)
\(=\left(x-y+2\right)\left(x^2+y^2+6+xy-x-5y\right)\)