Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thiếu y3 nha bạn :
\(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

x3 + 3x2y - 9xy2 + 5y3
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 6y3 - 12xy2 + 6 x2y )
= ( x - y )3 + 6y ( x - y )2
= ( x - y )2 ( x + 5y )

a) \(x^3-3x+1-3x^2=\left(x^3+1\right)-\left(3x^2+3x\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)
b) \(2x^2+4x+2-2y^2=2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x+1+y\right)\left(x+1-y\right)\)

\(x^8y^8+x^4y^4+1=\left[\left(x^4y^4\right)^2+2x^4y^4+1\right]-x^4y^4=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2\right)^2+2x^2y^2+1-x^2y^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2+1\right)^2-\left(xy\right)^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\)
Phân tích đa thức thành nhân tử
x3+3x2y−9xy2+5y2
x8y8+x4y4+1

\(3y^3+6xy^2+3x^2y=3y\left(y^2+2xy+x^2\right)=3y\left(x+y\right)^2\)
\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)\)
\(=\left(x-1\right)\left(x^2+4x+1\right)\)
Tham khảo nhé~

a: Ta có: \(10x^4-27x^3y-110x^2y^2-27xy^3+10y^4\)
\(=10x^4+20x^2y^2+10y^4-27xy\left(x^2+y^2\right)-130x^2y^2\)
\(=10\left(x^2+y^2\right)^2-27xy\left(x^2+y^2\right)-130x^2y^2\)
\(=10\left(x^2+y^2\right)^2-52xy\left(x^2+y^2\right)+25xy\left(x^2+y^2\right)-130x^2y^2\)
\(=2\left(x^2+y^2\right)\left(5x^2+5y^2-26xy\right)+5xy\left(5x^2+5y^2-26xy\right)\)
\(=\left(5x^2-26xy+5y^2\right)\left(2x^2+5xy+2y^2\right)\)
\(=\left(5x^2-25xy-xy+5y^2\right)\left(2x^2+4xy+xy+2y^2\right)\)
\(=\left\lbrack5x\left(x-5y\right)-y\left(x-5y\right)\right\rbrack\left\lbrack2x\left(x+2y\right)+y\left(x+2y\right)\right\rbrack\)
=(5x-y)(x-5y)(2x+y)(x+2y)
b: \(x^5-4x^4+3x^3+3x^2-4x+1\)
\(=x^5+x^4-5x^4-5x^3+8x^3+8x^2-5x^2-5x+x+1\)
\(=\left(x+1\right)\left(x^4-5x^3+8x^2-5x+1\right)\)
\(=\left(x+1\right)\left(x^4-x^3-4x^3+4x^2+4x^2-4x-x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(x^3-4x^2+4x-1\right)\)
\(=\left(x+1\right)\left(x-1\right)\left\lbrack\left(x^3-x^2\right)-3x^2+3x+x-1\right\rbrack\)
\(=\left(x+1\right)\left(x-1\right)\cdot\left(x-1\right)\left(x^2-3x+1\right)=\left(x+1\right)\left(x-1\right)^2\cdot\left(x^2-3x+1\right)\)

Phân tích đa thức thành nhân tử:
\(3x^2-12x^2y^2+3y^2+6xy\)
\(=3\left(x^2-4x^2y^2+y^2+2xy\right)\)
\(=3\left[\left(x^2+2xy+y^2\right)-\left(2xy\right)^2\right]\)
\(=3\left[\left(x+y\right)^2-\left(2xy\right)^2\right]\)
\(=3\left(x+y-2xy\right)\left(x+y+2xy\right)\)
Sửa đề: \(x^2+3xy+2xy+6y^2\)
\(=\left(x^2+3xy\right)+\left(2xy+6y^2\right)\)
=x(x+3y)+2y(x+3y)
=(x+3y)(x+2y)