
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Phân tích đa thức thành nhân tử:
\(36-12x+x^2\)
\(=36-6x-6x+x^2\)
\(=\left(36-6x\right)-\left(6x-x^2\right)\)
\(=6\left(6-x\right)-x\left(6-x\right)\)
\(=\left(6-x\right)\left(6-x\right)=\left(6-x\right)^2\)

a, \(x^4+6x^3+7x^2-6x+1\)
\(=x^4-2x^2+1+6x^3+9x^2+6x\)
\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)
\(=\left(x^2-1+3x\right)^2\)
b, \(x^4-7x^3+14x^2-7x+1\)
\(=x^4+2x^2+1+7x^3+12x^2-7x\)
\(=\left(x^2+1\right)^2-7x\left(x^2+1\right)+12^2\)
\(=\left(x^2-1+3x\right)^2\)
c, \(12x^2-11x-36\)
\(=12x^2-27x+16x-36\)
\(=3x\left(4x-9\right)+4\left(4x-9\right)\)
\(=\left(4x-9\right)\left(3x+4\right)\)

mk viết đáp án, ko biết biến đổi ib mk
a) \(x^3+3x^2y-9xy^2+5y^3=\left(x+5y\right)\left(x-y\right)^2\)
b) \(x^4+x^3+6x^2+5x+5=\left(x^2+5\right)\left(x^2+x+1\right)\)
c) \(x^4-2x^3-12x^2+12x+36=\left(x^2-6\right)\left(x^2-2x-6\right)\)
d) \(x^8y^8+x^4y^4+1=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\left(x^4y^4-x^2y^2+1\right)\)

đưa về dạng hằng đẳng thức thứ 4 lập phương của 1 tổng
\(x^3+6x^2+12x+8\)
\(=\left(x+2\right)^3\)
\(x^3+6x^2+12x+8=x^3+2.3x^2+2.3^2x+2^3=\left(x+2\right)^3\)
xong ròi k1 mình nha bn thanks

Với x = -3 ta có -27-4*9+ 36+27=0 do đó đa thức chứa nhân tử x+3
Ta có: x^3 -4x^2-12x+27 = x^3 +3x^2 -7x^2-21x+9x+27 =(x^3 +3x^2)-(7x^2+21x) + (9x+27) =x^2(x+3) -7x(x+3)+ 9(x+3)=(x+3)(X^2 - 7x+9)
* Xét x^2 -7x + 9 = x^2 - 2x.7/2 +49/4-49/4+9 = (x-7/2)^2 -13/4 =(x-7/2- √13/2)(x-7/2+√13/2)
Vậy: x^3 -4x^2-12x+27 = (x+3)(x-7/2)^2 -13/4 =(x-7/2- √13/2)(x-7/2+√13/2)
k cho mình nha

1/
a, x2+36=12x
<=>x2-12x+36=0
<=>(x-6)2=0
<=>x-6=0
<=>x=6
b, 5x(x-3)+3-x=0
<=>5x(x-3)-(x-3)=0
<=>(5x-1)(x-3)=0
<=>\(\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}}\)
2/ Sửa đề x2z2 = y2z2
Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x^2+xy+xz\right)\left(x^2+xz+xy+yz\right)+y^2z^2\)
Đặt x2+xy+xz=t, ta có
\(A=4t\left(t+yz\right)+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+y^2z^2\right)^2\ge0\)

câu a đặt chung x ra là xong
câu b
x^3 + 3x^2 - 7x^2 - 21x + 9x+ 27 còn lại tự làm nhé
a) x3 - 2x2 + x - xy2
= x (x2 - 2x + 1 - y2)
= x [(x2 - 2x + 1) - y2]
= x [(x - 1)2 - y2]
= x [(x - 1) + y] [(x - 1) - y]
= x (x - 1 + y) (x - 1 - y)
b) x3 - 4x2 - 12x + 27
= (x3 + 27) - (4x2 + 12x)
= (x3 + 33) - 4x (x + 3)
= (x + 3) (x2 - 3x + 32) - 4x (x + 3)
= (x + 3) [(x2 - 3x + 9) - 4x]
= (x + 3) (x2 - 3x + 9 - 4x)
= (x + 3) (x2 - 7x + 9)
#Học tôt!!!
~NTTH~


a) = (x3 +33) -4x(x+3)
= (x+3)(x2 -3x+9-4x)
= (x+3)(x2 - 7x +9)
\(x^2+12x+36\)
\(=x^2+2.x.6+6^2\)
\(=\left(x+6\right)^2\)