
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài làm:
a) \(x^2-6x+4=\left(x^2-6x+9\right)-5=\left(x-3\right)^2-\left(\sqrt{5}\right)^2\)
\(=\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\)
b) \(x^2-4x+3=x^2-x-3x+3=\left(x-1\right)\left(x-3\right)\)
c) \(6x^2-5x+1=6x^2-3x-2x+1=\left(2x-1\right)\left(3x-1\right)\)
d) \(3x^2+13x-10=3x^2+15x-2x-10=\left(x-5\right)\left(3x-2\right)\)

\(x^5+x+1=x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1\)
\(=\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)-\left(x^4+x^3+x^2\right)\)
\(=x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x^{10}+x^5+1\)
\(=\left(x^{10}-x^9+x^7-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^9-x^8+x^6-x^5+x^4-x^2+x\right)\)
\(+\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
\(=x^2\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
\(+x\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
\(+\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)

\(=2x^3+2x^2-9x^2-9x+10x+10\)
\(=2x^2\left(x+1\right)-9x\left(x+1\right)+10\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^2-9x+10\right)\)
\(=\left(x+1\right)\left[\left(2x^2-4x\right)-\left(5x-10\right)\right]\)
\(=\left(x+1\right)\left[2x\left(x-2\right)-5\left(x-2\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(2x-5\right)\)



=(x3+53)-(x2+5x)
=(x+5)(x2-5x+25)-x(x+5)
=(x+5)(x2-5x+25-x)
=(x+5)(x2-6x+25)
Làm cách khác :D
x3 - x2 - 5x + 125
Thử với x = -5 ta được :
(-5)3 - (-5)2 - 5.(-5) + 125 = 0
Vậy -5 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho ( x + 5 )
Thực hiện phép chia x3 - x2 - 5x + 125 cho ( x + 5 ) ta được x2 - 6x + 25
Vậy x3 - x2 - 5x + 125 = ( x + 5 )( x2 - 6x + 25 )
Kết quả: Phân tích thành nhân tử
\(5^x+x^{10}+10\)