K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

a8 + a4 + 1 = (a8 + 2a4​ + 1) - a4 = (a4 + 1)2 - a4

= (a4 + 1 - a2)(a4 + 1 + a2) = (a4 + 1 - a2)[(a2 + 1) - a2]

= (a4 + 1 - a2)(a2 + 1 + a)(a2 + 1 - a)

17 tháng 8 2018

\(64x^4+y^4=64x^4+16x^2y^2+y^4-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-16x^2y^2\)

\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

=.= hok tốt!!

17 tháng 8 2018

       \(64x^4+y^4\)

\(=\left(8x^2\right)^2+2.8x^2.y^2+\left(y^2\right)^2-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2+y^2-4xy\right).\left(8x^2+y^2-4xy\right)\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:

a. Không phân tích được thành nhân tử

b. \(a^4+a^2-22=(a^2+\frac{1}{2})^2-\frac{89}{4}=(a^2+\frac{1-\sqrt{89}}{2})(a^2+\frac{1+\sqrt{89}}{2})\)

(thông thường nhân tử là số hữu tỉ, phân tích kiểu này như cố để thành nhân tử cũng không hợp lý lắm, bạn coi lại đề)

c.

$x^4+4x^2-5=(x^4-x^2)+(5x^2-5)$

$=x^2(x^2-1)+5(x^2-1)=(x^2-1)(x^2+5)=(x-1)(x+1)(x^2+5)$

 

31 tháng 7 2021

Đề câu a là +1, câu b là -2 ạbucminh

Giải lại giúp mk vs ạ

3 tháng 7 2018

Đặt \(A=2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4\)

\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ca\right)^2\right)\)

\(A=-\left(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2-4\left(ca\right)^2\right)\)

Áp dụng hàng đẳng thức \(\left(a^2-b^2+c^2\right)=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ca\right)^2\):

\(A=-\left[\left(a^2-b^2+c^2\right)^2-4\left(ca\right)^2\right]\)

\(A=-\left(a^2-b^2+c^2-2ca\right)\left(a^2-b^2+c^2+2ca\right)\)

28 tháng 1 2021

2222222222222a+257222222222222222222222222222222222222222222222222222222222222222222222222222222222222222a=?

23 tháng 12 2020

\(a^6+a^4+a^2b^2+b^4-b^6\\ =a^6-b^6+a^4+a^2b^2+b^4\\ =\left(a^6-b^6\right)+\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2\right)^3-\left(b^2\right)^3\right]+\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^2+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+2a^2b^2+b^4-a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]\\ =\left(a^2-b^2+1\right)\left(a^2+b^2-ab\right)\left(a^2+b^2+ab\right)\)

a6, a4 là số mũ hay hệ số vậy bn

19 tháng 4 2019

Ta có

a 4 + a 3 + a 3 b + a 2 b = a 4 + a 3 + a 3 b + a 2 b = a 3 a + 1 + a 2 b a + 1 = a + 1 a 3 + a 2 b = a + 1 a 2 a + b = a 2 a + b a + 1

Đáp án cần chọn là: A

12 tháng 8 2018

a) ( 3 x   -   2 y ) 3 .        b) ( x   -   1 ) ( x   +   3 ) 2 .

3 tháng 8 2015

Bài 1 :

\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)

Bài 2 :

 \(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)

\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)

Tick đúng nha 

1 tháng 8 2021

X^2-6+8