Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Những phương trình là phương trình chính tắc của (H) là: b), c), d).
![](https://rs.olm.vn/images/avt/0.png?1311)
Bất phương trình bậc nhất 2 ẩn :
\(2x+3y>0\Rightarrow Câu\) \(C\)
\(x-2y\le1\Rightarrow Câu\) \(f\)
\(4\left(x-1\right)+5\left(y-3\right)>2x-9\)
\(\Leftrightarrow4x-4+5y-15-2x+9>0\)
\(\Leftrightarrow2x+5y-10>0\) \(\Rightarrow Câu\) \(i\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Do \({1^2} + {\left( { - 1} \right)^2} > - 7\) nên \({x^2} + {y^2} - 2x + 2y - 7 = 0\) là phương trình đường tròn
b) Vì \({4^2} + {\left( { - 1} \right)^2} < 20\) nên \({x^2} + {y^2} - 8x + 2y + 20 = 0\)không là phương trình đường tròn
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 3,b = 4,c = 21\)
Ta có \({a^2} + {b^2} - c = 9 + 16 - 21 = 4 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(3;4)\) và có bán kính \(R = \sqrt 4 = 2\)
b) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b = - 2,c = 2\)
Ta có \({a^2} + {b^2} - c = 1 + 4 - 2 = 3 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1; - 2)\) và có bán kính \(R = \sqrt 3 \)
c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2},b = - 1,c = 7\)
Ta có \({a^2} + {b^2} - c = \frac{9}{4} + 1 - 7 = - \frac{{15}}{4} < 0\). Vậy đây không là phương trình đường tròn.
d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn.
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình chính tắc của elip là: c) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\).
a) Không là PTCT vì a =b =8
b) Không là PTCT
d) Không là PTCT vì a =5 < b =8.
Những phương trình chính tắc của parabol là: b), d)