Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn C.
Số cây mỗi hàng (bắt đầu từ hàng thứ nhất) lập thành một cấp số cộng có u1 = 1; d = 1
Giả sử có n hàng cây thì
Ta có 3003 = Sn = nu1 + ⇔ n2 + n – 6006 = 0 ⇔ n = 77.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn B.
Gọi số hàng cây là n.
Gọi số cây lần lượt trên các hàng là 1; 2; 3..; n.
Đây là một cấp số cộng với số hạng đầu u1 = 1; d = 1 .
Ta có:
Vậy số hàng cần tìm là 77.
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo đề bài ta có dãy số chỉ số ghế có ở các hàng là một cấp số cộng có số hạng đầu \({u_1} = 17\) và công sai \(d = 3\).
a) Số ghế có ở hàng cuối cùng là: \({u_{20}} = {u_1} + 19{\rm{d}} = 17 + 19.3 = 74\) (ghế).
b) Tổng số ghế có trong rạp là: \({S_{20}} = \frac{{20\left[ {2{u_1} + 19{\rm{d}}} \right]}}{2} = \frac{{20\left[ {2.17 + 19.3} \right]}}{2} = 910\) (ghế).
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \({u_1} = 15,\;d = 3\)
\({S_n} = \frac{n}{2}\left[ {2 \times 15 + \left( {n - 1} \right) \times 3} \right] = 870\)
\(\frac{n}{2}\left( {27 + 3n} \right) = 870\)
\(\begin{array}{l} \Leftrightarrow 3{n^2} + 27n - 1740 = 0\\ \Leftrightarrow \left[ \begin{array}{l}n = 20\\n = - 29(L)\end{array} \right.\end{array}\)
Vậy cần phải thiết kế 20 hàng ghế.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án D.
Chọn 2 cây trong 6 cây xoài có C 6 2 = 15 cách.
Chọn 2 cây trong 4 cây mít có C 4 2 = 6 cách.
Chọn 2 cây trong 2 cây xoài có C 2 2 = 1 cách.
Suy ra có tất cả 15 . 6 . 1 = 90 cách chọn 6 cây trồng.
Vậy xác suất cần tính là
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có:
\(\begin{array}{l}{u_1} = 25\\{u_2} = 24 = {u_1} - 1\\{u_3} = 23 = {u_2} - 1\\ \vdots \end{array}\)
Vậy công thức truy hồi: \({u_n} = {u_{n - 1}} - 1\left( {n \ge 2} \right) \Leftrightarrow {u_n} - {u_{n - 1}} = - 1 < 0\).
Vậy \(\left( {{u_n}} \right)\) là dãy số giảm.
b) Ta có:
\(\begin{array}{l}{v_1} = 14\\{v_2} = 15 = {v_1} + 1\\{v_3} = 16 = {v_2} + 1\\ \vdots \end{array}\)
Vậy công thức truy hồi: \({v_n} = {v_{n - 1}} + 1\left( {n \ge 2} \right) \Leftrightarrow {v_n} - {v_{n - 1}} = 1 > 0\).
Vậy \(\left( {{v_n}} \right)\) là dãy số tăng.
Giải sữ người ta đã trồng được n hàng.
Số cây ở mỗi hàng lập thành một cấp số cộng với u1 = 1, công sai d = 1
Tổng số cây ở n hàng cây là:
\({S_n} = \frac{{n\left( {1 + n} \right)}}{2} = \frac{{n\left( {n + 1} \right)}}{2} = 4950\)
⇔ n2 + n – 9 900 = 0
⇔ n = 99 (thỏa mãn) hoặc n = – 100 (không thỏa mãn)
Vậy có 99 hàng cây được trồng theo cách trên.