Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn A.
Lời giải.
Không gian mẫu là số cách chọn 2 phần thưởng trong số 12 phần thưởng
Suy ra số phần tử của không gian mẫu là Ω = C 12 2 = 66
Gọi A là biến cố ""Bạn An và bạn Bình có phần thưởng giống nhau"".
Để tìm số phần tử của A, ta làm như sau
Gọi x là cặp số gồm 2 quyển Toán và Vật Lí
y là số cặp gồm 2 quyển Toán và Hóa Học;
z là số cặp gồm 2 quyển Vật Lí và Hóa Học
Ta có hệ phương trình
Suy ra số phần tử của biến cố A là
Ω A = C 3 2 + C 4 2 + C 5 2
Vậy xác suất cần tính P ( A ) = 19 66
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án D
Ta chia số phần thưởng đó thành 3 bộ Toán Lý, 4 bộ Toán Hóa và 5 bộ Hóa Lý.
Như vậy, có C 12 2 cách chọn giải thưởng cho An và Bình
Trong đó, cách chọn số bộ Toán Lý là C 3 2 , cách chọn số bộ Toán Hóa là C 3 2 , cách chọn số bộ Hóa Lý là C 4 2
Do đó, xác suất là
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án D
Ta chia số phần thưởng đó thành 3 bộ Toán Lý, 4 bộ Toán Hóa và 5 bộ Hóa Lý.
Như vậy, có C 12 2 cách chọn giải thưởng cho An và Bình.
Trong đó, cách chọn số bộ Toán Lý là C 3 2
cách chọn số bộ Toán Hóa là C 4 2
cách chọn số bộ Hóa Lý là C 5 2 .
Do đó, xác suất là
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án B
30 quyển sách chia thành 15 bộ gồm :
+) 6 bộ giống nhau gồm 1 Toán- 1 Lý
+) 5 bộ giống nhau gồm 1 Lý – 1 Hóa
+) 4 bộ giống nhau gồm 1 Toán – 1 Hóa
Chọn 6 học sinh trong 15 học sinh để trao bộ Toán- Lý có C 15 6 cách
Chọn 5 học sinh trong 9 học sinh còn lại để trao bộ Lý- Hóa có C 9 5 cách
Vậy 4 học sinh còn lại sẽ được nhận bộ Toán – Hóa. Vậy có C 15 6 . C 9 5 cách trao thưởng.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Theo bài thì mỗi bạn sẽ nhận 2 quyển vở khác loại. Gọi số bạn nhận vở toán văn là $a$, vở văn anh là $b$, vở anh toán là $c$
Ta có:
$a+b+c=9; a+b=6; b+c=5; a+c=7$
$\Rightarrow a=3; b=2; c=4$
Tặng quà cho 9 bạn thỏa đề tức là tặng quà sao cho có 3 bạn trong 9 bạn nhận được toán văn, 2 bạn trong 6 bạn còn lại nhân được văn anh, 4 bạn còn lại nhận được anh toán. Số cách trao là:
$C^3_9.C^2_6.C^4_4=1260$
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Chọn 4 quyển sách khác nhau đủ 3 loại, có các TH sau:
TH1: 1 toán, 1 lý, 2 hóa: $A_1=C^1_6.C^1_7.C^2_8$ cách
TH2: 2 toán, 1 lý, 1 hóa: $A_2=C^2_6.C^1_7.C^1_8$ cách
TH3: 1 toán, 2 lý, 1 hóa: $A_3=C^1_6.C^2_7.C^1_8$ cách
Tổng số cách: $A_1+A_2+A_3=3024$ cách
![](https://rs.olm.vn/images/avt/0.png?1311)
Xếp theo thứ tự: ngữ văn- toán- ngữ văn- toán- ngữ văn- toán-ngữ văn-toán- ngữ văn. Vậy có 5.4.4.3.3.2.2.1=2880 cách
Chọn B
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn A
|
T.A |
|
T.A |
|
T.A |
|
T.A |
|
T.A |
|
T.A |
|
T.A |
|
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
Gọi Ω là biến cố “xếp quyển sách lên kệ sách một cách tùy ý”
=> n( Ω ) = 14!
A là biến cố “xếp 14 cuốn sách lên kệ sách sao cho hai cuốn sách cùng môn không ở cạnh nhau”.
- Xếp quyển sách Tiếng Anh vào kệ có 7! cách.
- quyển sách Tiếng Anh tạo ra 8 chỗ trống (gồm 6 chỗ trống ở giữa và 2 chỗ trống trước sau).
Đánh số từ 1 đến 8, từ trái sang phải cho các chỗ trống. Khi đó ta xét các trường hợp:
TH1: Xếp sách Văn hoặc Toán vào vị trí từ 1 đến 7 có 7! cách.
TH2: Xếp sách Văn hoặc Toán vào vị trí từ 2 đến 8 có 7! cách.
TH3: Xếp cặp sách Văn – Toán chung vào ngăn, các ngăn 3,4,5,6,7 xếp tùy ý số sách còn lại. Ta có:
+ Số cách chọn cặp sách Văn – Toán: 3.4 cách.
+ Vị trí 2 cuốn sách trong cặp sách: 2! cách.
+ Xếp các sách còn lại vào các ngăn 3,4,5,6,7 có 5! cách
Vậy ta có số cách xếp 1 cặp sách Văn – Toán chung vào ngăn 2, các ngăn 3,4,5,6,7 xếp tùy ý số sách còn lại là 3.4.2!.5! cách.
Tương tự cho xếp cặp sách Văn – Toán lần lượt vào các ngăn 3,4,5,6,7
Số trường hợp thuận lợi của biến cố là