Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Các cậu giúp tớ với ạ,nmai tớ ph thi r nên tớ rất cần sự giúp đỡ từ mng ai.cảm ơn<3
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi thời gian vòi 1 chảy riêng là x (x>27) (giờ)
=> thời gian vòi 2 chảy riêng là x-27 (giờ)
thời gian vòi 1 chảy trong 1 giờ là 1/x (giờ)
thời gian vòi 2 chảy trong 1 giờ là 1/x-27 (giờ)
Theo bài ra, ta có pt: \(\dfrac{1}{x}+\dfrac{1}{x-27}=\dfrac{1}{18}\)
<=>\(\dfrac{x-27+x}{x\left(x-27\right)}=\dfrac{1}{18}\)
<=>\(\dfrac{18\left(2x-27\right)}{18x\left(x-27\right)}=\dfrac{x\left(x-27\right)}{18x\left(x-27\right)}\)
=> 18(2x-27)=x(x-27)
<=> x2-63x+486=0
<=> \(\left[{}\begin{matrix}x=54\left(TM\right)\\x=-9\left(loai\right)\end{matrix}\right.\)
Vậy nếu chảy riêng vòi 1 mất 54 giờ
vòi 2 mất 54-27=27 giờ
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi thời gian vòi 1 chảy đầy bể là x(giờ) ( x>36/5)
thời gian vòi 2 chảy đầy bể là y(giờ) (y>36/5)
Thì lượng nước vòi 1 chảy trong 1 h là 1/x (bể)
lượng nước vòi 2 chảy trong 1 h là 1/y (bể)
Vì 2 vòi cung chảy vao bể ko có nước sau 7h12' = 36/5h nên lượng nước 2 vòi chay trong 1 h là 5/36 (bể) có pt: 1/x+1/y=5/36 (1)
lượng nước vòi 1 chảy trong 4 h là 4/x (bể)
lượng nước vòi 2 chảy trong 3 h là 3/y (bể)
Vì 2 vòi chay như vậy được 1/2 bể nen có pt :4/x+3/y=1/2 (2)
Từ (1)và (2) có hệ pt :
Đáp số :x=18; y=12
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi thời gian vòi thứ nhất chảy một mình đầy bể là x(giờ)(Điều kiện: x>4)
Gọi thời gian vòi thứ hai chảy một mình đẩy bể là y(giờ)(Điều kiện: y>4)
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)
Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)
Trong 1 giờ, 2 vòi chảy được: \(\dfrac{1}{4}\)(bể)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\)(1)
Theo đề, ta có phương trình: \(\dfrac{9}{x}+\dfrac{1}{y}=1\)(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{9}{x}+\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-8}{x}=\dfrac{-3}{4}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{32}{3}\\\dfrac{1}{y}=\dfrac{1}{4}-\dfrac{3}{32}=\dfrac{5}{32}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{32}{3}\\y=\dfrac{32}{5}\end{matrix}\right.\)(thỏa ĐK)
Vậy: Vòi 1 cần \(\dfrac{32}{3}h\) để chảy một mình đầy bể
Vòi 2 cần \(\dfrac{32}{5}h\) để chảy một mình đầy bể
Gọi thời gian mà vòi thứ nhất và vòi thứu hai chảy một mình đẩy bể lần lượt là x, y (giờ)
Vì hai vòi cùng chảy vào một cái bể không có nước thì trong 12 giờ thì sữ đầy bể nên:
12x+12y=112x+12y=1
Mặt khác, Nếu chỉ mở vòi thứ nhất trong 4h rồi mở vòi thứ 2 chảy trong 6h thì chỉ được hai phần năm bể nên ta có:
4x+6y=254x+6y=25
Suy ra, ta có hệ phương trình:
{12x+12y=14x+6y=25⇔{x=20x=30{12x+12y=14x+6y=25⇔{x=20x=30
Vậy, thời gian mà vòi thứ nhất và vòi thứ hai chảy một mình đẩy bể lần lượt là 20 giờ, 30 giờ
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi thời gian mà vòi thứ nhất chảy riêng đầy bể là x (giờ), (x > 2)
Trong một giờ:
- Vòi thứ nhất chảy được 1/x (bể)
- Vòi thứ hai chảy được 1/(x-2) (bể)
- Vì vòi thứ ba chảy ra trong 7,5 giờ thì cạn bể nên trong 1 giờ vòi thứ ba chảy được 2/15 (bể)
Khi mở cả ba vòi thì vòi thứ nhất và vòi thứ hai chảy vào bể còn vòi thứ ba cho nước chảy ở bể ra nên ta có phương trình:
Vậy chỉ dùng vòi thứ nhất thì sau 10 giờ bể đầy nước
Đáp án: C
![](https://rs.olm.vn/images/avt/0.png?1311)
- Gọi phần bể vòi thứ nhất, thứ hai chảy được trong 1 phút lần lượt là \(x,y\left(0< x,y< 1\right)\)
Đổi 1h30p=90p
- Hai vòi nước cùng chảy vào 1 bể cạn thì sau 1h30p đầy bể nên:
\(90\left(x+y\right)=1\Rightarrow x+y=\dfrac{1}{90}\left(1\right)\)
- Vòi 1 chảy trong 15p rồi đến vòi 2 chảy tiếp trong 20p được 1/5 bể nên:
\(15x+20y=\dfrac{1}{5}\left(2\right)\)
(1), (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x+15y=\dfrac{1}{6}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\5y=\dfrac{1}{30}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{225}\\y=\dfrac{1}{150}\end{matrix}\right.\)
Thời gian vòi 1 chảy để đầy bể: \(1:\dfrac{1}{225}=225\) phút = 3,75h.
Thời gian vòi 2 chảy để đầy bể: \(1:\dfrac{1}{150}=150\) phút=2,5h.
Để giải quyết bài toán này, chúng ta cần xác định lượng nước mà mỗi vòi chảy vào bể trong một giờ.
Gọi x là lượng nước mà mỗi vòi chảy vào bể trong một giờ. Theo giả thiết, khi mở cả hai vòi trong một giờ, bể sẽ được 1/3 đầy. Vì vậy, lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x (do có hai vòi).
Theo giả thiết ban đầu, nếu hai vòi cùng chảy vào bể trong 6 giờ, bể sẽ đầy. Với lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x, ta có:
6 * 2x = 1 (bể đầy)
Từ đó, ta có:
12x = 1
x = 1/12
Vậy, mỗi vòi chảy riêng thì để bể đầy, mỗi vòi sẽ mất 1/12 giờ, hay khoảng 5 phút.
Lưu ý rằng đây là một bài toán giả định, và kết quả phụ thuộc vào giả thiết ban đầu.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi thời gian chảy một mình đầy bể của vòi 1 và vòi 2 lần lượt là a,b
Theo đề, ta có hệ:
1/a+1/b=1/1,5 và 1/4*1/a+1/3*1/b=1/5
=>a=15/4 và b=5/2
![](https://rs.olm.vn/images/avt/0.png?1311)
Đổi 2 giờ 55 phút = giờ
Gọi x (giờ) là thời gian chảy riêng đầy bể của vòi thứ nhất.
Điều kiện: x > 35/12
Khi đó thời gian chảy riêng đầy bể của vòi thứ hai là x + 2 (giờ)
trong 1 giờ, vòi thứ nhất chảy được 1/x (bể)
trong 1 giờ, vòi thứ hai chảy được 1/(x + 2 ) (bể)
Giá trị x = - 7/6 không thỏa mãn điều kiện bài toán.
Vậy vòi thứ nhất chảy riêng đầy bể trong 5 giờ
vòi thứ hai chảy riêng đầy bể trong 5 + 2 = 7 giờ
04:48 và 04:00 là gì thế bạn?