Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi \(x\left(giờ\right),y\left(giờ\right)\) lần lượt là thời gian của đội thứ nhất và đội thứ hai làm riêng xong công việc (x, y > 0)
Trong một giờ hai đội làm được: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\) (công việc)
Đội thứ nhất làm trong 3 giờ rồi đội thứ hai làm tiếp trong 4 giờ được 0,8 công việc nên ta có:
\(\dfrac{3}{x}+\dfrac{4}{y}=0,8\)
Ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{3}{x}+\dfrac{4}{y}=0,8\end{matrix}\right.\)
Đặt \(u=\dfrac{1}{x};v=\dfrac{1}{y}\), ta có:
\(\left\{{}\begin{matrix}u+v=\dfrac{1}{4}\\3u+4v=0,8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4u+4v=1\\3u+4v=0,8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4u+4v=1\\u=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4.\dfrac{1}{5}+4v=1\\u=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\dfrac{1}{20}\\u=\dfrac{1}{5}\end{matrix}\right.\)
*) \(u=\dfrac{1}{5}\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{5}\Leftrightarrow x=5\) (nhận)
*) \(v=\dfrac{1}{20}\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{20}\Rightarrow y=20\) (nhận)
Vậy đội thứ nhất làm riêng trong 5 giờ xong công việc
đội thứ hai làm riêng trong 20 giờ xong công việc
![](https://rs.olm.vn/images/avt/0.png?1311)
TK:
1.
Gọi năng xuất làm việc trong 1 ngày của đội 1 và đội 2 lần lượt là:x và y(công việc/ngày).
2 đội công nhân cùng làm chung 1 công việc thì sau 15 ngày
⇒
15
×
y
+
15
×
y
=
1
(
1
)
Đội 1 làm riêng trong 3 ngày rồi dừng lại và đội 2 làm tiếp công việc đó trong 5 ngày thì cả 2 đội hoàn thành 25% công việc(ở đây mk đổi luôn)
⇒
3
×
x
+
5
×
y
=
1
4
⇒
5
×
(
3
×
x
+
5
×
y
)
=
5
×
1
4
15
×
x
+
25
×
y
=
5
4
(
2
)
Lấy (2) trừ đi (1) ta được:
(
15
×
x
+
25
×
y
)
−
(
15
×
x
+
15
×
y
)
=
5
4
−
1
10
×
y
=
1
4
y
=
1
4
:
10
⇒
y
=
1
40
⇒
x
=
1
24
Vậy .................
Tham Khảo:
1.
Gọi năng xuất làm việc trong 1 ngày của đội 1 và đội 2 lần lượt là:x và y(công việc/ngày).
2 đội công nhân cùng làm chung 1 công việc thì sau 15 ngày
⇒15×y+15×y=1(1)⇒15×y+15×y=1(1)
Đội 1 làm riêng trong 3 ngày rồi dừng lại và đội 2 làm tiếp công việc đó trong 5 ngày thì cả 2 đội hoàn thành 25% công việc(ở đây mk đổi luôn)
⇒3×x+5×y=14⇒3×x+5×y=14
⇒5×(3×x+5×y)=5×14⇒5×(3×x+5×y)=5×14
15×x+25×y=54(2)15×x+25×y=54(2)
Lấy (2) trừ đi (1) ta được:
(15×x+25×y)−(15×x+15×y)=54−1(15×x+25×y)−(15×x+15×y)=54−1
10×y=1410×y=14
y=14:10y=14:10
⇒y=140⇒y=140
⇒x=124⇒x=124
Vậy .................
![](https://rs.olm.vn/images/avt/0.png?1311)
đổi 2 giờ 40 phút=\(\dfrac{8}{3}\) giờ
gọi thời gian đội 1 và đội 2 làm riêng để hoàn thành công việc lần lượt là
x,y(x,y>\(\dfrac{8}{3}\) )
=>hệ pt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\dfrac{8}{3}}=\dfrac{3}{8}\\y-x=4\end{matrix}\right.\) giải hệ pt trên ta được \(\left\{{}\begin{matrix}x=4\left(TM\right)\\y=8\left(TM\right)\end{matrix}\right.\)
vậy nếu làm riêng để hoàn thành công việc thì đội thứ nhất hết 4 giờ
đội thứ 2 hết 8 giờ
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi thời gian đội 1 và đội 2 hoàn thành công việc một mình lần lượt là x(ngày), y( ngày)(x,y>12)
Mỗi ngày đội 1 làm được phẫn việc là 1/x
Đội 2 làm được số phần việc là 1/y
cả hai đội làm được số phần việc là 1/12
ta có phương trình: 1/x+1/y=1/12(1)
Đội 1 làm trong 5 ngày rồi nghỉ, dội 2 làm tiếp 15 ngày thì họ làm được 75%công việc
từ đó ta có phương trình: 5/x+15/y=3/4(2)
Từ (1)(2) ta có hệ phương trình:{1/x+1/y=1/12; 5/x+15/y=3/4
Giải hệ pt ta tìm được x=20; y=30
KL:Nếu làm một mình thì đội thứ nhất hoàn thành công việc trong 20 ngày, đội thứ hai hoàn thành công việc trong 30 ngày.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi thời gian làm một mình của đội 1 và đội 2 lần lượt là 3x và x
Theo đề, ta có: 1/3x+1/x=1/9
=>x=12
=>Thời gian làm một mình của đội 1 là 36 ngày
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi A là số công việc đội 1 và đội 2 làm được trong 1 ngày.
Gọi B là số công việc đội 3 làm được trong 1 ngày.
Cả 3 đội trong 1 ngày làm được A + B công việc
Theo bài ra ta có hệ phương trình
4 * (A + B) + 12 * A = 1 hay 4A +4B + 12A = 1 hay 16A +4B = 1 (1)
6 * (A + B) + 9 * A = 1 hay 6A + 6B + 9A =1 hay 15A + 6B = 1 (2)
Nhân (1) với 3, nhân (2) với 2 ta có hệ
48A + 12B = 3 (3)
30A + 12B = 2 (4)
Trừ (3) cho (4) ta có
18A = 1, suy ra A = 1/18
Thời gian chỉ đội 1 và đội 2 cùng làm hoàn thành công việc là
1 : 1/18 = 18 ngày
Vậy chỉ đội 1 và đội 2 cùng làm thì sau 18 ngày sẽ hoàn thành công việc.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi x ( giờ ) là thời gian đội 1 làm một mình xong công việc ( x > 12 )
Thời gian đội thứ 2 làm một mình xong công việc là : \(x-7\left(giờ\right)\)
Trong một giờ đội 1 làm được \(\dfrac{1}{x}\left(\text{công việc}\right)\)
Trong một giờ đội 2 làm được \(\dfrac{1}{x-7}\left(\text{công việc}\right)\)
Trong một giờ cả hai đội làm được \(\dfrac{1}{12}\left(\text{công việc}\right)\)
Theo bài ra ta có pt : \(\dfrac{1}{x}+\dfrac{1}{x-7}=\dfrac{1}{12}\Leftrightarrow12\left(x-7\right)+12x=x\left(x-7\right)\Leftrightarrow x^2-31x+84=0\Leftrightarrow\left\{{}\begin{matrix}x=28\left(N\right)\\x=3\left(L\right)\end{matrix}\right.\)
Vậy thời gian đội 1 làm xong công việc là 8 giờ , thời gian đội 2 làm xong công việc là : \(28-7=21\left(giờ\right)\)
Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc trong x giờ, người thứ hai trong y giờ. Điều kiện x > 0, y > 0.
Trong 1 giờ người thứ nhất làm được 1/x công việc, người thứ hai 1/y công việc, cả hai người cùng làm chung thì được 1/8 công việc.
Ta được : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\)
Trong 3 giờ, người thứ nhất làm được 3/x công việc, trong 4 giờ người thứ hai làm được 4/y công việc, cả hai người làm được 4/5 công việc
Ta được\(\frac{3}{x}+\frac{4}{x}=\frac{4}{5}\)
Ta có hệ phương trình : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\\\frac{3}{x}+\frac{4}{x}=\frac{5}{4}\end{cases}}\)
Giải ra ta được x = \(\frac{35}{4}\), y = \(\frac{280}{3}\)
Vậy người thứ nhất 35/4 giờ, người thứ hai 280/3 giờ.