Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình làm hết bước khó bước dễ bạn tự làm nha
a . n - 5 \(⋮\)n + 2
=> n + 2 - 7 \(⋮\)n + 2 mà n + 2 \(⋮\)n + 2 => 7 \(⋮\)n + 2
=> n + 2 thuộc Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
b . 3n - 1 \(⋮\)5n + 2
=> 5 . ( 3n - 1 ) \(⋮\)5n + 2
=> 15n - 5 \(⋮\)5n + 2
=> 15n + 6 - 11 \(⋮\)5n + 2
=> 3 . ( 5n + 2 ) - 11 \(⋮\)5n + 2 mà 3 . ( 5n + 2 ) \(⋮\)5n + 2 => 11 \(⋮\)5n + 2
=> 5n + 2 thuộc Ư ( 11 ) = ...
Lập bảng tính giá trị của n
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ n2+5n+5=n2+2n+3n+6-1 = n(n+2)+3(n+2)-1 = (n+2)(n+3)-1
Nhận thấy, (n+2)(n+3) chia hết cho n+2 với mọi n
=> để n2+5n+5 chia hết cho n+2 thì 1 phải chia hết cho n+2
=> n+2=(-1, 1) => n=(-3, -1)
b/ Ta có: n+1 chia hết cho 3n-1
<=> 3(n+1) chia hết cho 3n-1
<=> 3n+3 chia hết cho 3n-1
<=> (3n-1)+4 chia hết cho 3n-1
<=> 4 chia hết cho 3n-1 => 3n-1=(-2,-1,1,2) => n=(-1/3 ; 0; 2/3; 1)
Do n nguyên => Chọn được n=0 và n=1
![](https://rs.olm.vn/images/avt/0.png?1311)
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)
Ta có :
\(-n-5=-n-2-3=-\left(n+2\right)-3\) chia hết cho \(n+2\)\(\Rightarrow\)\(\left(-3\right)⋮\left(n+2\right)\)\(\Rightarrow\)\(\left(n+2\right)\inƯ\left(-3\right)\)
Mà \(Ư\left(-3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
Vậy \(n\in\left\{-1;-3;1;-5\right\}\)
dể lắm bạn à