Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
một lượt hành khách lên ở bến thứ n thì chỉ có thể có 12-n khả năng xuống ở bến tiếp theo.
Vậy nhiều nhất có 11+10+...+1 =66 lượt hành khách
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có cứ một bến thì có người lên tàu . cứ mỗi bến số người lên tàu lại tăng thêm .
Lại có 1 + 2 + 3 + ..... + x = 66
Lại có từ 1 cộng cho đến 11 bằng 66 nên suy ra x = 11
vậy đến bến thứ 11 thì số người lên tàu sẽ là 66
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử đến bến thứ \(x\)là có đủ \(36\)hành khách lên tàu.
Khi đó tổng số khách lên tàu là: \(1+2+3+...+x\).
Số số hạng của tổng trên là: \(\left(x-1\right)\div1+1=x\)(số hạng)
Giá trị của tổng trên là: \(x\times\left(x+1\right)\div2\).
Khi đó ta có: \(x\times\left(x+1\right)\div2=36\)
\(\Leftrightarrow\text{}\text{}x\times\left(x+1\right)=72\)
Ta thấy \(72=8\times9\)do đó \(x=8\).
Vậy sau \(8\)bến đỗ thì có đủ \(36\)hành khách lên tàu.
một lượt hành khách lên ở bến thứ n thì chỉ có thể có 12-n khả năng xuống ở bến tiếp theo. Vậy nhiều nhất có 11+10+...+1 =66 lượt hành khách