Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài toán này bạn chỉ cần quan tâm đến phương án D là đúng thôi, vì để chứng minh B, C sai thì lại tương đối phức tạp, không cần thiết.
Theo giả thiết uC trễ pha pi/2 so vơi u --> u cùng pha với i --> Cộng hưởng, cường độ dòng điện đạt cực đại.
Vậy khi tăng f thì cường độ I giảm.
Chọn D.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình giải thích rõ hơn công thức của bạn Nguyễn Trung Thành
iOUUUUULRCRC→→→→→→abc
Nhận xét:
+ Khi L thay đổi thì góc b và c không đổi (do R và ZC không đổi).
+ Khi L = L0 để UL max thì a0 + b = 900.
Áp dụng định lí hàm số sin trong tam giác OULUC:
\( \frac{U_L}{\sin(a+b)}=\frac{U}{\sin c}=const\)
\(\Rightarrow\frac{U_L}{\sin(a_1+b)}=\frac{U_L}{\sin(a_2+b)}\Rightarrow \sin(a_1+b)=\sin(a_2+b)\Rightarrow a_1+b=\pi-(a_2+b)\)
\(\Rightarrow a_1+a_2=\pi-2b\) Mà \(a_0+b=\frac{\pi}{2}\Rightarrow 2a_0=\pi-2b\)
\(\Rightarrow a_1+a_2=2a_0\)
Hay: \(\varphi_0=\frac{\varphi_1+\varphi_2}{2}\)
Áp dụng công thức: \(\varphi_0=\frac{\varphi_1+\varphi_2 }{2}\Rightarrow\varphi_0=\frac{0,56+0,98 }{2}=0,77\)
\(\Rightarrow \cos\varphi_0=\cos0,77=0,72\)
Đáp án B.
![](https://rs.olm.vn/images/avt/0.png?1311)
L giảm --> ZL giảm
A. Đúng, vì L giảm về ZL = ZC thì cộng hưởng xảy ra thì I tăng lên cực đại rồi sau đó giảm
B. Đúng, tương tự A.
C. UL max khi: \(Z_L=\frac{R^2+Z_c^2}{Z_C}=\frac{30^2+30^3}{30}=60\Omega\), như vậy điện áp hiệu dụng 2 đầu L tăng lên cực đại rồi giảm.
Tuy nhiên, nó chỉ giảm về: \(U_L=\frac{U}{\sqrt{R^2+Z_C^2}}R\) chứ không phải giảm về 0 ---> Câu này sai
D. Đúng, bạn có thể tự kiểm tra.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Z_L=\omega L=100\Omega\)
Ta áp dụng một tính chất của mạch RLC khi C thay đổi để Uc max là lúc đó u mạch vuông pha với uRL.
Như vậy, bài này theo giả thiết uAB lệch pha pi/2 so với uAM là thỏa mãn điều kiện trên.
=> \(Z_C=\frac{R^2+Z_L^2}{Z_L}=\frac{50^2+100^2}{100}=125\Omega\)
=> C
![](https://rs.olm.vn/images/avt/0.png?1311)
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: U2 = U2R + U2L => UR = √U2−U2LU2−UL2 = √(40√2)2−402(402)2−402 = 40 V.
Cường độ dòng điện hiệu dụng: I = URRURR = 40404040 = 1 A.
a) Cảm kháng: ZL = ULIULI = 401401 = 40 Ω
b) Độ lệch pha: tanφ = ZLRZLR = 1 => φ = +Π4+Π4. Tức là i trễ pha hơn u một góc Π4Π4.
Vậy biểu thức tức thời của cường độ dòng điện là: i = √2cos(100πt - Π4Π4) (A).