Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
một năm có 12 tháng mà lớp có 40 học sinh.
mà 40 không chia hết cho 12 nên
áp dụng định lý diricle có ít nhất : [40 :12] + 1= 4 (học sinh có cùng tháng sinh )
b tương tự
giữ lời nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử có không quá 3 học sinh có tháng sinh giống nhau ta có
Số học sinh lớp có không quá 12 x 3=36 học sinh vì một năm có 12 tháng
theo nguyên lý Dirichlet phải có ít nhất 4 học sinh cùng tháng sinh
Mình ko biết đúng hay sai nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 1 năm có 12 tháng nên ta giả thiết được rằng 12 hs ( Nhóm 1) có các tháng sinh từ 1-12
12 hs ( nhóm 2) có các tháng sinh từ 1-12
12 hs ( nhóm 3) có tháng sinh từ 1-12
=> Ta có 3 nhóm, mỗi nhóm có 12hs có các tháng sinh từ 1-12 => ta đã có được ít nhất có 3 hs sinh có cùng tháng
=> còn thừa 4 hs
Giả sử 4 bạn hs đs có các tháng sinh khác nhau => Trùng vs tháng sinh của các bạn trong 3 nhóm trên ( Vs điều kiện khác nhau)
=> Có ít nhất 4 bạn có cùng tháng sinh ( ĐPCM)
Chia lớp 6A thành 3 nhóm và còn thừa ra 4 học sinh:
-nhóm 1: 12 học sinh có tháng sinh từ tháng 1 đến tháng 12
-nhóm 2: 12 học sinh có tháng sinh từ tháng 1 đến tháng 12
-nhóm 3: 12 học sinh có tháng sinh từ tháng 1 đến tháng 12
Qua 3 nhóm trên, mỗi nhóm đã có học sinh sinh từ tháng 1 đến tháng 12
=>Có ít nhất 3 học sinh sinh cùng tháng trong 3 nhóm trên
Còn 4 học sinh còn lại, giả sử các học sinh ko sinh cùng tháng nhưng vẫn có học sinh trùng tháng với các học sinh trong 3 nhóm trên
=>có ít nhất 4 học sinh sinh cùng tháng (đpcm)