Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để cửa hàng có lãi thì lợi nhuận lớn hơn 0, suy ra \(I > 0 \Leftrightarrow - 3{x^2} + 200x - 2325 > 0\)
Tam thức \(I = - 3{x^2} + 200x - 2325\) có \(\Delta = 12100 > 0\), có hai nghiệm phân biệt \({x_1} = 15;{x_2} = \frac{{155}}{3}\) và có \(a = - 3 < 0\)
Ta có bảng xét dấu như sau:
Vậy ta thấy cửa hàng có lợi nhuận khi \(x \in \left( {15;\frac{{155}}{3}} \right)\) (kg)

Để cửa hàng có lãi thì lợi nhuận lớn hơn 0
Nên ta có bất phương trình như sau: \( - 3{x^2} + 200x - 2325 > 0\)
Tam thức bậc hai \(f\left( x \right) = - 3{x^2} + 200x - 2325\) có hai nghiệm phân biệt là \({x_1} = 15;{x_2} = \frac{{155}}{3}\) và có \(a = - 3 < 0\)
Nên \(f\left( x \right)\) dương khi x nằm trong khoảng \(\left( {15;\frac{{155}}{3}} \right)\)
Vậy bất phương trình \( - 3{x^2} + 200x - 2325 > 0\) có tập nghiệm là \(\left( {15;\frac{{155}}{3}} \right)\)

Vì không giảm giá thì cửa hàng được lãi 20%.
Khi giảm giá bán 10% 1 chiếc điện thoại, tỉ lệ của số tiền lãi lẫn vốn so với tiền vốn là:
100% + 8%=108%
Khi giảm giá bán 10% 1 chiếc điện thoại, tỉ lệ giữa số tiền nếu không giảm giá và số tiền khi giảm giá là:
100% - 10% = 90%
Nếu không giảm giá, tỉ lệ giữa số tiền lãi lẫn vốn so với tiền vốn là:
108% : 90% * 100% = 120%
Nếu không giảm giá thì cửa hàng được lãi so với tiền vốn:
120% -100% = 20%
Đáp số: 20%
Lời giải:
Buổi chiều cửa hàng bán được số kg gạo là:
\(75.60\text{%}=75.\frac{60}{100}=45\)(kg)
Cả hai buổi bán được : \(75+45=120\) (kg) \(=1,2\) (tạ gạo)