Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn A
Khi ca nô hướng mũi hướng theo bờ sông góc 60° (v12 và v23 có độ lớn không đổi):
+ Từ hình vẽ:

Cho (1) là ca nô, (2) là nước, (3) là bờ sông.
(a) Trong 100s, nước chảy đưa ca nô chếch từ vị trí B đến C, nên vận tốc của dòng nước so với bờ là: \(v_{23}=\dfrac{BC}{t}=\dfrac{200}{100}=2\left(m/s\right)\)
(b) Dựa vào hình vẽ, dễ thấy: \(\hat{ADB}=\alpha=60^o\).
Khi đi theo hướng \(AD:v_{12}=v_{12}';v_{23}=v_{23}'=2\left(m/s\right)\)
\(v_{23}'\) là vận tốc của dòng nước so với bờ sông, tức vecto này hướng theo hướng vector \(\overrightarrow{DB}\), \(v_{12}'\) là vận tốc của ca nô so với dòng nước, tức vecto này theo hướng vector \(\overrightarrow{AD}\).
Dựa vào hình vẽ và hệ thức lượng trong tam giác vuông: \(v_{12}'=\dfrac{v_{23}'}{cos\hat{ADB}}=\dfrac{2}{cos60^o}=4\left(m/s\right)\).
(c) Khi đi theo hướng \(AC\), vector \(\overrightarrow{v_{12}}\) hướng theo hướng vector \(\overrightarrow{AB}\)
\(\Rightarrow AB=v_{12}t=4\cdot100=400\left(m\right)\)
(d) Khi đi theo hướng \(AD\), vận tốc của thuyền so với bờ là \(v_{13}'=v_{12}'sin\hat{ADB}=4\cdot sin60^o=2\sqrt{3}\left(m/s\right)\)
Thời gian qua sông lần sau: \(t'=\dfrac{AB}{v_{13}'}=\dfrac{400}{2\sqrt{3}}\approx115,47\left(s\right)\)

Chọn C.
Gọi người bơi là (1), dòng nước là (2)
Để bơi sang sông với quãng đường ngắn nhất người đó phải bơi sao cho vận tốc v 12 ⇀ (vận tốc của người đối với nước) có hướng như hình vẽ để v 10 ⇀ (vận tốc của người đối với bờ sông) có phương vuông góc với bờ sông và thoả mãn:
v 10 ⇀ = v 20 ⇀ + v 12 ⇀
( v 20 ⇀ là vận tốc dòng chảy của nước)

Đáp án B
Gọi người là (1), dòng nước là (2)
Khi bơi theo hướng vuông góc với dòng chảy (hình a), khi đó người bơi đến điểm B, cách H một khoảng 50m
⇒ v 2 v 12 = 1 2
Để điểm B trùng với điểm H, hướng bơi ngoài đó (so với nước) có v 12 → phải như hình b
⇒ sin α = v 2 v 12 . Lưu ý : v 2 = v
Vậy sin α = 1 2 ⇒ α = 60 0
Nghĩa là người đó phải bơi theo hướng tạo với dòng chảy (tạo với v 2 → ) một góc bằng 1200

Chọn C.
Gọi người bơi là (1), dòng nước là (2)
Để bơi sang sông với quãng đường ngắn nhất người đó phải bơi sao cho vận tốc v 12 → (vận tốc của người đối với nước) có hướng như hình vẽ để v 10 → (vận tốc của người đối với bờ sông) có phương vuông góc với bờ sông và thoả mãn:
v 10 → = v 12 → + v 20 →
( v 20 → là vận tốc dòng chảy của nước)
Từ hình vẽ:
Suy ra góc tạo bởi v 12 → và v 20 → là:

Đáp án D.
Trong cùng thời gian nước di chuyển được đoạn DB, thuyền di chuyển được đoạn AD. Do v t n = 3 v n b nên AD=3DB. Từ đó suy ra sin β = 1 / 3 hay α ≈ 71 0 C