
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a-3b}{2c-3d}=\frac{2a+3b}{2c+3d}\)
Có: \(\frac{2a-3b}{2c-3d}=\frac{2a+3b}{2c+3d}\Leftrightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b, Co: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\Rightarrow\frac{ab}{cd}\)
Lại có:\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)
Tu (1)&(2),có: \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
\(a,\frac{5}{6}-2\sqrt{\frac{4}{9}}+\sqrt{\left(-2\right)^2}\)
\(=\frac{5}{6}-2.\frac{2}{3}+2\)
\(=\frac{5}{6}-\frac{4}{6}+\frac{12}{6}\)
\(=\frac{5-4+12}{6}=\frac{13}{6}\)
\(b,\left(-3\right)^2.\left(\frac{1}{3}\right)^3:\left[\left(-\frac{2}{3}\right)^3-1\frac{1}{3}\right]-\left(-200\right)^0\)
\(=9.\frac{1}{27}:\left(-\frac{8}{27}-\frac{5}{3}\right)-1\)
\(=\frac{1}{3}:\left(-\frac{8}{27}-\frac{45}{27}\right)-1\)
\(=\frac{1}{3}:\left(-\frac{53}{27}\right)-1\)
\(=\frac{1}{3}.\left(-\frac{27}{53}\right)-1\)
\(=-\frac{9}{53}-1=-\frac{9}{53}-\frac{53}{53}\)
\(=-\frac{62}{53}\)
\(c,\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):2\)
\(=\left(-\frac{1}{2}-\frac{3}{5}\right).\frac{1}{3}+\frac{1}{3}-\left(-\frac{1}{6}\right).\left(-\frac{1}{2}\right)\)
\(=\left(-\frac{5}{10}-\frac{6}{10}\right).\frac{1}{3}+\frac{1}{3}-\frac{1}{12}\)
\(=-\frac{11}{10}.\frac{1}{3}+\frac{1}{3}-\frac{1}{12}\)
\(=\frac{1}{3}\left(-\frac{11}{10}-\frac{1}{12}\right)\)
\(=\frac{1}{3}\left(-\frac{66}{60}-\frac{5}{60}\right)\)
\(=\frac{1}{3}.\left(-\frac{71}{60}\right)\)
\(=-\frac{71}{180}\)
Mình không hiểu lắm ở dòng thứ 3 và 4 của câu a, bạn giải thích lại cho mình được không?
a/
Đặt $\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}=k$
$\Rightarrow a=2k+1; b=3k+2; c=4k+3$
Khi đó:
$3a+3b-c=50$
$\Rightarrow 3(2k+1)+3(3k+2)-(4k+3)=50$
$\Rightarrow 11k+6=50$
$\Rightarrow 11k=44\Rightarrow k=4$
Ta có:
$a=2k+1=2.4+1=9$
$b=3k+2=3.4+2=14$
$c=4k+3=4.4+3=19$
b/
$2a=3b; 5b=7c\Rightarrow \frac{a}{3}=\frac{b}{2}; \frac{b}{7}=\frac{c}{5}$
$\Rightarrow \frac{a}{21}=\frac{b}{14}=\frac{c}{10}$
Áp dụng TCDTSBN:
$\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{45}{15}=3$
$\Rightarrow a=21.3=63; b=14.3=42; c=10.3=30$
3x=4y
\(\Rightarrow\) x/3=y/4
áp dụng tính chất .........
TỰ LÀM TÍP ĐI NHA
Ta có 3x = 4y nên \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2-y^2}{16-9}=\frac{28}{7}=4\)
\(\Rightarrow x^2=4.16=64;y^2=4.9=36\)
\(\Rightarrow\orbr{\begin{cases}x=8;y=6\\x=-8;y=-6\end{cases}}\)
Đặt cái bt ở trên là A thì 3^4.A=81 A=3^4+3^8+3^12+3^16 mà A=1+3^4+3^8+3^12>>>80A=3^16-1>>A=(3^16-1)/80.
Tương tự thì B(bt ở mẫu)=(3^16-1)/8.
>>A/b=(1/80)/(1/8)=1/10
Vậy GTBT là 1/10
mình kho ghi lại đề nha
giải
đề ( ghi lại )
= \(\frac{1+81+6561+312}{1+9+81+729+6561+59049+312+314}\)
=\(\frac{6643+312}{91+719+6561+59049+312+314}\)
=\(\frac{6643+312}{66430+312+1314}\)