K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 giờ trước (18:57)

a, Ta có tam giác \(A B C\) nhọn, kẻ:

  • \(B D \bot A B\)
  • \(C D \bot A C\)

=> Các góc tại \(B\)\(C\) đều là góc vuông.

Ta xét tứ giác \(A B D C\):

  • \(\angle A B D = 90^{\circ}\) (do \(B D \bot A B\))
  • \(\angle A C D = 90^{\circ}\) (do \(C D \bot A C\))

Suy ra:

\(\angle A B D + \angle A C D = 180^{\circ}\)

Mà tổng góc trong tứ giác bằng \(360^{\circ}\), nên:

\(\angle B A D + \angle B C D + 180^{\circ} = 360^{\circ} \Rightarrow \angle B A D + \angle B C D = 180^{\circ}\)

\(\angle B A D\) chính là góc tại \(A\) của tam giác \(A B C\), ký hiệu là \(\angle A\),
\(\angle B C D\) chính là góc tại \(D\) trong tứ giác (ký hiệu là \(\angle D\)).

\(\Rightarrow \angle D + \angle A = 180^{\circ}\)

b, * Chứng minh \(Q J = B D\)

\(I\) là trung điểm của \(P Q\)\(B J\), nên:

  • \(I P = I Q\) (trung điểm \(P Q\))
  • \(I B = I J\) (trung điểm \(B J\))

Xét hai tam giác \(I P B\)\(I Q J\):

  • \(I P = I Q\) (gt)
  • \(I B = I J\) (gt)
  • \(\angle P I B = \angle Q I J\) (đối đỉnh)

⇒ Tam giác \(I P B\) ≅ tam giác \(Q I J\) (cạnh – cạnh – góc xen giữa)

Suy ra:

\(P B = Q J\)

Nhưng \(P B = A B - A P = A B - \left(\right. A B - B P \left.\right) = B P\), mà \(B P = B D\) (gt)

\(Q J = P B = B P = B D \Rightarrow \boxed{Q J = B D}\)

*Chứng minh \(\angle A Q J + \angle D = 180^{\circ}\)

Ta đã biết ở phần a): \(\angle A + \angle D = 180^{\circ} .\)

Ta sẽ chứng minh \(\angle A Q J = \angle A\)

Xét hai tam giác:

  • Tam giác \(A B P\): có \(B P = B D\) (gt)
  • Tam giác \(A C Q\): có \(C Q = C D\) (gt)

Do \(B D \bot A B\), \(C D \bot A C\)\(B D\) là đường cao tam giác \(A B C\), tương tự \(C D\) cũng là đường cao.

Suy ra tam giác \(A B P\) vuông tại \(B\), tam giác \(A C Q\) vuông tại \(C\). Hai điểm \(P , Q\) được lấy đối xứng vai trò như nhau theo hai cạnh của tam giác \(A B C\).

Lại có \(Q J = B D = B P\) (ở trên vừa chứng minh), do đó tam giác \(A Q J\) đồng dạng với tam giác \(A B C\)

\(\angle A Q J = \angle A .\)

Vậy:

\(\angle A Q J + \angle D = \angle A + \angle D = 180^{\circ} . \textrm{ }\textrm{ } \textrm{ } (đ\text{pcm})\)

9 giờ trước (18:05)

Xét ΔAHC vuông tại H có \(\sin C=\frac{AH}{AC}\)

=>\(\frac{AH}{10}=\sin30=\frac12\)

=>\(AH=\frac{10}{2}=5\left(\operatorname{cm}\right)\)

ΔAHC vuông tại H

=>\(HA^2+HC^2=CA^2\)

=>\(HC^2=10^2-5^2=100-25=75=\left(5\sqrt3\right)^2\)

=>\(HC=5\sqrt3\left(\operatorname{cm}\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=HA^2\)

=>\(HB=\frac{5^2}{5\sqrt3}=\frac{5}{\sqrt3}=\frac{5\sqrt3}{3}\) (cm)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(AB^2=5^2+\left(\frac{5\sqrt3}{3}\right)^2=25+\frac{25}{3}=\frac{100}{3}\)

=>\(AB=\sqrt{\frac{100}{3}}=\frac{10}{\sqrt3}\) (cm)

5 giờ trước (21:37)

15:

a: Gọi giá niêm yết của mỗi cái quạt là x(đồng), giá niêm yết của mỗi cái bàn ủi hơi nước là y(đồng)

(ĐIều kiện: x>0; y>0)

Giá của mỗi cái quạt sau khi giảm giá là: \(x\left(1-10\%\right)=0,9x\) (đồng)

Giá của mỗi cái bàn ủi sau khi giảm giá là: \(y\left(1-25\%\right)=0,75\) y(đồng)

Số tiền phải trả nếu mua theo giá niêm yết là 2175000 nên x+y=2175000(1)

Số tiền phải trả nếu mua theo giá đã giảm là 1717500 nên 0,9x+0,75y=1717500(2)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}x+y=2175000\\ 0,9x+0,75y=1717500\end{cases}\Rightarrow\begin{cases}0,9x+0,9y=1957500\\ 0,9x+0,75y=1717500\end{cases}\)

=>\(\begin{cases}0,9x+0,9y-0,9x-0,75y=1957500-1717500=240000\\ x+y=2175000\end{cases}\)

=>\(\begin{cases}0,15y=240000\\ x+y=2175000\end{cases}\Rightarrow\begin{cases}y=1600000\\ x=2175000-1600000=575000\end{cases}\) (nhận)

vậy: giá niêm yết của mỗi cái quạt là 575000(đồng), giá niêm yết của mỗi cái bàn ủi hơi nước là 1600000(đồng)

b: Giá của mỗi cái quạt sau khi giảm giá là:

\(575000\cdot0,9=517500\) (đồng)

Giá vốn của mỗi cái quạt là:

\(517500\cdot\frac{100}{115}=450000\) (đồng)

giá của mỗi cái bàn ủi hơi nước sau khi giảm giá là:

\(1600000\cdot75\%=1200000\left(đồng\right)\)

Giá vốn của mỗi cái bàn ủi là:

\(1200000\cdot\frac{100}{120}=1000000\) (đồng)

Bài 12: Gọi số cần tìm có dạng là \(\overline{ab}\)

Tổng của hai chữ số là 12 nên a+b=12

Nếu viết theo thứ tự ngược lại thì số mới lớn hơn số cũ là 18 đơn vị nên ta có:

\(\overline{ba}-\overline{ab}=18\)

=>10b+a-10a-b=18

=>-9a+9b=18

=>a-b=-2

mà a+b=12

nên \(a=\frac{-2+12}{2}=\frac{10}{2}=5;b=12-5=7\)

vậy: Số cần tìm là 57

9 giờ trước (18:11)

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\) (2)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

\(AE\cdot AB=AH^2\)

=>\(AE=\frac{AH^2}{AB}\)

\(AF\cdot AC=AH^2\)

=>\(AF=\frac{AH^2}{AC}\)

Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)

9 giờ trước (18:11)

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\) (2)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

\(AE\cdot AB=AH^2\)

=>\(AE=\frac{AH^2}{AB}\)

\(AF\cdot AC=AH^2\)

=>\(AF=\frac{AH^2}{AC}\)

Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)

10 tháng 8

giúp mình từ câu 9 với