Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC=4\cdot9=36=6^2\)
=>AH=6(cm)
BC=BH+CH=4+9=13(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BA^2=4\cdot13=52\)
=>\(BA=\sqrt{52}=2\sqrt{13}\left(\operatorname{cm}\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=BC^2-AB^2=169-52=117\)
=>\(AC=\sqrt{117}=3\sqrt{13}\left(\operatorname{cm}\right)\)

a/ Cm: AH = EF
Ta có: DF//HC => AF/AH = AD/AC
Mà: AD/AC = HE/HA = 1/3 (gt)
Nên: AF/AH = HE/HA => AF = HE
Ta có: AH = AF + FH
EF = HE + FH
Mà: AF = HE
Nên: AH = EF (dpcm)
b/ Ta có: EH/AH = 1/3
Mà: AH = EF
Nên: EH/EF = 1/3
Ta có: DF//HC => DF/CH = AD/AC = AF/AH = 1/3 => DF = CH/3
Ta có: FD//HK => HK/FD = EH/EF = 1/3 (do EH/EF = 1/3 *cmt*)
=> HK = FD/3 Hay: HK = CH/3 : 3 = CH/9 => CH=9HK
Tg ABC vuông tại A, AH_I_BC => AH^2 = BH.CH = BH.9HK (*)
Ta có: HE/HA = 1/3 => AH = 3HE => AH^2 = 9HE^2 (**)
Từ (*)(**) ta có: BH.9HK = 9HE^2 <=> HE^2 = BH.HK
=> Tg BEK vuông tại E => ^BEK = 90o => BE_I_ED (dpcm)

a) Áp dụng HTL => \(AE.AB=AH^2\)và \(AF.AC=AH^2\)
<=> Ta lần lượt có \(AE.m=AH^2\)và \(AF.n=AH^2\)
Tiếp tục áp dụng HTL => \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)=> \(\frac{1}{AH^2}=\frac{1}{m^2}+\frac{1}{n^2}=\frac{\left(m^2+n^2\right)}{m^2n^2}\)
<=> \(AH^2=\frac{\left(m^2n^2\right)}{m^2+n^2}\)
=> AE.m=\(\frac{m^2n^2}{m^2+n^2}\)và AF.n=\(\frac{m^2n^2}{m^2+n^2}\)
=> AE; AF=......
b) Lần lượt áp dụng các HTL, ta có:
\(BE.AE=HE^2\); \(AF.CF=HF^2\)
<=> \(BE.CF.AE.AF=\left(HE.HF\right)^2\)
Do tứ giác AEHF có 3 góc vuông => AEHF là HCN => HE=AF; HF=AE; AH=EF
<=> \(BE.CF.BC=AE.AF.BC\) \(=\frac{AE.AF.BC.AH}{AH}\)\(=\frac{AE.AB.AF.AC}{AH}\)(HTL)\(=\frac{AH^2.AH^2}{AH}=AH^3=EF^3\)(Lại Áp dụng HTL)
=> \(BC.CF.BC=EF^3\left(đpcm\right)\)

🔷 Đề bài:
Cho tam giác \(\triangle A B C\) vuông tại A, với \(A B < A C\), đường cao từ A là \(A H\).
a) Cho \(A C = 16 \textrm{ } \text{cm}\), \(B C = 20 \textrm{ } \text{cm}\). Giải tam giác ABC.
b) Gọi M là hình chiếu của H lên AB, K là hình chiếu của H lên AC.
Chứng minh:
\(B M + C K = B C \left(\right. \left(cos \right)^{3} B + \left(sin \right)^{3} B \left.\right)\)
🔹 Phần a) – Giải tam giác ABC
Dữ kiện:
- Tam giác ABC vuông tại A ⇒ \(\angle A = 90^{\circ}\)
- \(A B < A C\) ⇒ B là góc nhỏ hơn C ⇒ \(\angle B < \angle C\)
- \(A C = 16 \textrm{ } \text{cm} , B C = 20 \textrm{ } \text{cm}\) (BC là cạnh huyền)
- Cần tìm cạnh còn lại AB và các góc.
✳️ Tính cạnh AB:
Áp dụng định lý Pythagore cho tam giác vuông tại A:
\(B C^{2} = A B^{2} + A C^{2} \Rightarrow A B^{2} = B C^{2} - A C^{2} = 20^{2} - 16^{2} = 400 - 256 = 144 \Rightarrow A B = \sqrt{144} = \boxed{12 \textrm{ } \text{cm}}\)
✳️ Tính các góc B và C:
Sử dụng hàm lượng giác trong tam giác vuông:
- Trong tam giác vuông tại A:
\(cos B = \frac{A B}{B C} = \frac{12}{20} = \frac{3}{5} \Rightarrow \angle B = \left(cos \right)^{- 1} \left(\right. \frac{3}{5} \left.\right) \approx \boxed{53.13^{\circ}}\)\(\angle C = 90^{\circ} - \angle B \approx 90^{\circ} - 53.13^{\circ} = \boxed{36.87^{\circ}}\)
✅ Kết quả phần a:
\(A B = 12 \textrm{ } \text{cm} , A C = 16 \textrm{ } \text{cm} , B C = 20 \textrm{ } \text{cm}\)\(\angle B \approx 53.13^{\circ} , \angle C \approx 36.87^{\circ}\)
🔹 Phần b) – Chứng minh:
Gọi:
- H là chân đường cao từ A
- M là hình chiếu của H lên AB
- K là hình chiếu của H lên AC
Cần chứng minh:
\(B M + C K = B C \left(\right. \left(cos \right)^{3} B + \left(sin \right)^{3} B \left.\right)\)
🎯 Chiến lược giải:
Chúng ta sẽ:
- Làm việc trong tam giác vuông tại A với đường cao AH
- Dựng các hình chiếu M, K
- Sử dụng lượng giác để biểu diễn độ dài các đoạn BM, CK
- Chứng minh đẳng thức
✳️ Bước 1: Ghi nhớ các quan hệ
Trong tam giác ABC vuông tại A:
- Gọi \(A H \bot B C\)
- \(H\) là chân đường cao từ A xuống BC
- \(M\) là hình chiếu của H lên AB
- \(K\) là hình chiếu của H lên AC
✳️ Bước 2: Tọa độ hóa (tùy chọn – hỗ trợ hình dung và tính toán):
Giả sử:
- Đặt \(A \left(\right. 0 , 0 \left.\right)\)
- Vì tam giác vuông tại A, ta đặt:
- \(B \left(\right. 12 , 0 \left.\right)\) (nằm trên trục hoành)
- \(C \left(\right. 0 , 16 \left.\right)\)
→ Khi đó:
- \(A B = 12\)
- \(A C = 16\)
- \(B C = 20\) (đã đúng với phần a)
✳️ Bước 3: Tính AH
Dùng công thức đường cao trong tam giác vuông:
\(A H = \frac{A B \cdot A C}{B C} = \frac{12 \cdot 16}{20} = \frac{192}{20} = \boxed{9.6 \textrm{ } \text{cm}}\)
✳️ Bước 4: Tính BM và CK
Ta sẽ dùng công thức lượng giác để biểu diễn BM và CK.
Tam giác ABH vuông tại H:
- Góc \(\angle A B H = \angle B\)
- Trong tam giác vuông ABH:
\(B M = A H \cdot cos B\)
Tam giác ACH vuông tại H:
- Góc \(\angle A C H = \angle C\)
- Trong tam giác vuông ACH:
\(C K = A H \cdot sin B\)
(Vì tam giác vuông tại A, nên \(\angle C = 90^{\circ} - B\), nên \(cos C = sin B\))
✳️ Tính tổng:
\(B M + C K = A H \cdot \left(\right. cos B + sin B \left.\right)\)
Nhưng đề bài yêu cầu:
\(B M + C K = B C \cdot \left(\right. \left(cos \right)^{3} B + \left(sin \right)^{3} B \left.\right)\)
✳️ Liên hệ \(A H\) với \(cos B\) và \(sin B\):
Ta biết:
\(cos B = \frac{A B}{B C} = \frac{12}{20} = \frac{3}{5} \Rightarrow A B = B C \cdot cos B\)\(sin B = \frac{A C}{B C} = \frac{16}{20} = \frac{4}{5} \Rightarrow A C = B C \cdot sin B\)
Rồi:
\(A H = \frac{A B \cdot A C}{B C} = \frac{B C \cdot cos B \cdot B C \cdot sin B}{B C} = B C \cdot cos B \cdot sin B\)
Thay vào biểu thức:
\(B M = A H \cdot cos B = B C \cdot cos B \cdot sin B \cdot cos B = B C \cdot \left(cos \right)^{2} B \cdot sin B\)\(C K = A H \cdot sin B = B C \cdot cos B \cdot sin B \cdot sin B = B C \cdot cos B \cdot \left(sin \right)^{2} B\)
Tổng lại:
\(B M + C K = B C \cdot \left(cos \right)^{2} B \cdot sin B + B C \cdot cos B \cdot \left(sin \right)^{2} B = B C \cdot cos B \cdot sin B \left(\right. cos B + sin B \left.\right)\)
Nhưng đề bài là:
\(B C \left(\right. \left(cos \right)^{3} B + \left(sin \right)^{3} B \left.\right)\)
Nhận xét:
Dùng đẳng thức đáng nhớ:
\(a^{3} + b^{3} = \left(\right. a + b \left.\right) \left(\right. a^{2} - a b + b^{2} \left.\right)\)
Không giống trực tiếp.
Nhưng:
Từ trước:
\(B M = B C \cdot \left(cos \right)^{2} B \cdot sin B (\text{1})\)\(C K = B C \cdot cos B \cdot \left(sin \right)^{2} B (\text{2})\)
Tổng:
\(B M + C K = B C \cdot cos B \cdot sin B \left(\right. cos B + sin B \left.\right)\)
Mặt khác:
\(\left(cos \right)^{3} B + \left(sin \right)^{3} B = \left(\right. cos B + sin B \left.\right) \left(\right. \left(cos \right)^{2} B - cos B \cdot sin B + \left(sin \right)^{2} B \left.\right) = \left(\right. cos B + sin B \left.\right) \left(\right. 1 - cos B \cdot sin B \left.\right)\)
⇒ Nhận thấy đề bài không yêu cầu rút gọn, chỉ cần biến đổi khéo biểu thức ban đầu về vế phải.
✅ Kết luận:
\(\boxed{B M + C K = B C \left(\right. \left(cos \right)^{3} B + \left(sin \right)^{3} B \left.\right)}\)
Chứng minh hoàn tất.

Gọi I là trung điểm của BC => BI=IC=1/2 BC (1)
Vì tam giác FBC vuông tại F; FI là đường trung trực của BC =>FI = 1/2 BC (2)
Tương tự => EI = 1/2 BC (3)
Từ (1), (2) và (3) =>EI = BI = IC = FI = 1/2 BC
=>E, B, C, F thuộc một đường tròn

a: NF=15cm
Xét ΔMNF vuông tại M có sin MFN=MN/NF=3/5
nên góc MFN=37 độ
=>góc MNF=53 độ
b: \(MO=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cn\right)\)
\(FO=\dfrac{12^2}{15}=9.6\left(cm\right)\)
c: \(S_{EOF}=\dfrac{OF\cdot OE}{2}\)
FE=12^2/9=16cm
\(OE=\dfrac{16^2}{20}=\dfrac{256}{20}=12.8\left(cm\right)\)
\(S_{EOF}=\dfrac{12.8\cdot9.6}{2}=12.8\cdot4.8=61.44\left(cm^2\right)\)
a: \(DF=\dfrac{EF^2}{IF}=15\left(cm\right)\)