Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có EM là đường trung bình của tam giác BCD Þ ĐPCM.
b) DC đi qua trung điểm D của AE và song song với EM Þ DC đi qua trung điểm I của AM.
c) Vì DI là đường trung bình của tam giác AEM nên DI = (1/2) EM.(1)
Tương tự, ta được: EM = (1/2)DC (2)
Từ (1) và (2) Þ DC = 4DI
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình thì tự vẽ nha :))
Nối EM lại .
Có EM là đường trung bình của \(\Delta ABC\)
=> EM // DC
Lại có : DI cắt AE tại trung điểm D
và : EM // DI (EM // DC)
=> DI là đường trung bình của \(\Delta AEM\)
=> DI cắt AM tại trung điểm I
=> IA = IM
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
![](https://rs.olm.vn/images/avt/0.png?1311)
a:Xét ΔBDC có
M là trung điểm của BC
ME//DC
DO đó: E là trung điểm của DB
=>DE=EB(1)
Xét ΔAEM có
I là trung điểm của AM
ID//EM
Do đó: D là trung điểm của AE
=>AD=DE(2)
Từ (1) và (2) suy ra AD=DE=EB
b: Xét ΔBDC có
M là trung điểm của BC
E là trung điểm của BD
Do đó: ME là đường trung bình
=>ME=CD/2
Xét ΔAEM có
I là trung điểm của AM
D là trung điểm của AE
Do đó: ID là đường trung bình
SUy ra: \(ID=\dfrac{ME}{2}=\dfrac{CD}{2}:2=\dfrac{CD}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét ΔBDC có
M là trung điểm của BC
E là trung điểm của DB
Do đó: ME là đường trung bình của ΔBDC
Suy ra: ME//DC
Xét ΔAME có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
hay AI=IM