(5xy^2+9xy-x^2y^2):(-xy) tại x=1, y=2 rút gọn r tính...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

Ta có :

\(\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)\)

\(=\left(-xy\right).\left(-5y-9+xy\right):\left(-xy\right)\)

\(=-5y-9+xy\)

Thay \(x=1,y=2\) vào ta có :

\(-5y-9+xy=\left(-5\right).2-9+1.2=-17\)

NM
9 tháng 9 2021

\(\frac{3}{\sqrt{7}-1}+\frac{3}{\sqrt{7}+1}=\frac{3\left[\sqrt{7}+1+\sqrt{7}-1\right]}{\left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right)}=\frac{6\sqrt{7}}{6}=\sqrt{7}\)

\(\frac{3}{\sqrt{X}-1}-\frac{2}{\sqrt{X}+1}+\frac{X-7}{X-1}=\frac{3\left(\sqrt{X}+1\right)-2\left(\sqrt{X}-1\right)+X-7}{\left(\sqrt{X}+1\right)\left(\sqrt{X}-1\right)}=\frac{X+\sqrt{X}-2}{\left(\sqrt{X}+1\right)\left(\sqrt{X}-1\right)}=\frac{\sqrt{X}+2}{\sqrt{X}+1}\)

9 tháng 9 2021

TÍNH GIÁ TRỊ BIỂU THỨC:

\(\frac{3}{\sqrt{7}-1}\) + \(\frac{3}{\sqrt{7}+1}\)\(\frac{3\left(\sqrt{7}+1\right)+3\left(\sqrt{7}-1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}\)\(\frac{3\sqrt{7}+3+3\sqrt{7}-3}{6}\)=\(\frac{6\sqrt{7}}{6}\)=\(\sqrt{7}\)

RÚT GỌN BIỂU THỨC:

\(\frac{3}{\sqrt{X}-1}\)-\(\frac{2}{\sqrt{X}+1}\)+\(\frac{X-7}{X-1}\)

\(\frac{3\left(\sqrt{X}+1\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)-\(\frac{2\left(\sqrt{X}-1\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)+\(\frac{X-7}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)

\(\frac{3\sqrt{X}+3-2\sqrt{X}+2+X-7}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)

\(\frac{X+\sqrt{X}-2}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)

\(\frac{\left(\sqrt{X}+1\right)\left(\sqrt{X}-2\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)

\(\frac{\sqrt{X}-2}{\sqrt{X}-1}\)

CHÚC EM HỌC TỐT!

27 tháng 11 2018

@Arakawa White

@DƯƠNG PHAN KHÁNH DƯƠNG

@Nguyễn Việt Lâm

@Nguyễn Huy Tú

giúp với ạ !

27 tháng 11 2018

@Trần Trung Nguyên

\(\frac{x^3-x^2y-xy^2+y^3}{x^3+x^2y-xy^2-y^3}=\frac{\left(x^3-xy^2\right)-\left(x^2.y-y^3\right)}{\left(x^3-xy^2\right)+\left(x^2y-y^3\right)}=\frac{x.\left(x^2-y^2\right)-y.\left(x^2-y^2\right)}{x.\left(x^2-y^2\right)+y.\left(x^2-y^2\right)}=\frac{\left(x-y\right)\left(x^2-y^2\right)}{\left(x+y\right)\left(x^2-y^2\right)}=\frac{x-y}{x+y}\)

3x=2y

nên x/2=y/3

Đặt x/2=y/3=k

=>x=2k; y=3k

\(P=\dfrac{\left(2k\right)^2-2k\cdot3k+\left(3k\right)^2}{\left(2k\right)^2+2k\cdot3k+\left(3k\right)^2}\)

\(=\dfrac{4k^2-6k^2+9k^2}{4k^2+6k^2+9k^2}=\dfrac{4-6+9}{4+6+9}=\dfrac{7}{19}\)

22 tháng 7 2018

Ta có:

P=\(\sqrt{\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}}.\left(\sqrt{x}+\sqrt{y}\right)\)

=\(\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{x}+\sqrt{y}\right)\)

=x-y

Thay x=1000 và y=2000 vào ta được:

P=1000-2000=-1000

30 tháng 6 2019

i am in class 6