Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tải ứng dụng PhotoMath về nha. Ứng dụng này sẽ giải toán số chi tiết
a) \(x^3-4x^2-12x+27\)
\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
b) \(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
a) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)
b) \(6x-9-x^2=-\left(x-3\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
![](https://rs.olm.vn/images/avt/0.png?1311)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
![](https://rs.olm.vn/images/avt/0.png?1311)
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
![](https://rs.olm.vn/images/avt/0.png?1311)
\(o,x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
\(n,3x^3-3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\begin{array}{l} a)3x - 1 = x + 3\\ \Leftrightarrow 3x - x = 3 + 1\\ \Leftrightarrow 2x = 4\\ \Leftrightarrow x = 2\\ b)15 - 7x = 9 - 3x\\ \Leftrightarrow - 7x + 3x = 9 - 15\\ \Leftrightarrow - 4x = - 6\\ \Leftrightarrow x = \dfrac{3}{2}\\ c)x - 3 = 18\\ \Leftrightarrow x = 18 + 3\\ \Leftrightarrow x = 21 \end{array}\)
\(\begin{array}{l} d)2x + 1 = 15 - 5x\\ \Leftrightarrow 2x + 5x = 15 - 1\\ \Leftrightarrow 7x = 14\\ \Leftrightarrow x = 2\\ e)3x - 2 = 2x + 5\\ \Leftrightarrow 3x - 2x = 5 + 2\\ \Leftrightarrow x = 7\\ f) - 4x + 8 = 0\\ \Leftrightarrow - 4x = - 8\\ \Leftrightarrow x = 2 \end{array}\)
a) \(A=\left(x^3+x^2\right)-\left(x+1\right)=x\left(x+1\right)-\left(x+1\right)=\left(x-1\right)\left(x+1\right)\)
b) \(B=\left(x^3-3x^2\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x^2-4\right)\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)