K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

bạn có thể tham khảo những bộ sách dưới đây:

- tổng hợp các bài toán phổ dụng đại số 9

- nâng cao và phát triển đại số 9

- nâng cao và phát triển hình học 9

- các chuyên đề bồi dưỡng học sinh giỏi hình học 9

- toán phát triển bồi dưỡng học sinh giỏi hình học 9

30 tháng 7 2019

Hiệu diệu phương

cảm ơn bạn thanghoa

21 tháng 9 2015

đôi khi sách cũng sai chứ bạn.

Em có một câu hỏi này rất băn khoăn ạ, mong mọi người có thể đọc và chia sẻ kinh nghiệm cho em.Trong sách tham khảo mà em đang đọc có 2 bài tập vận dụng như sau:BTVD 1: Cho các số thực x,y thoả mãn \(x^2+xy+2y^2=1\). Tìm GTNN và GTLN của biểu thức \(P=x-2y+3\).BTVD 2: Cho các số thực thoả mãn ĐK: \(3x+y+2z=1\). Tìm GTNN và GTLN của biểu thức \(P=x^2+y^2+z^2\).Em nghĩ 2 bài này chắc chắn đều có một...
Đọc tiếp

Em có một câu hỏi này rất băn khoăn ạ, mong mọi người có thể đọc và chia sẻ kinh nghiệm cho em.

Trong sách tham khảo mà em đang đọc có 2 bài tập vận dụng như sau:

BTVD 1: Cho các số thực x,y thoả mãn \(x^2+xy+2y^2=1\). Tìm GTNN và GTLN của biểu thức \(P=x-2y+3\).

BTVD 2: Cho các số thực thoả mãn ĐK: \(3x+y+2z=1\). Tìm GTNN và GTLN của biểu thức \(P=x^2+y^2+z^2\).

Em nghĩ 2 bài này chắc chắn đều có một số phương pháp giải khác nhau. Nhưng trước đó trong phần bài tập ví dụ, sách có đưa ra một số bài toán khác cùng dạng và có hướng dẫn giải chi tiết theo phương pháp tách ra thành tổng các bình phương để đánh giá nên em nghĩ 2 bài này cũng có thể làm theo cách này.

(Cụ thể em xin lấy ví dụ sau:

BTVD: Cho các số thực m, n, p thoả mãn:

\(2m^2+2n^2+4p^2+3mn+mp+2np=\dfrac{3}{2}\)

Tìm GTNN  và GTLN của \(B=m+n+p\)

HDG: Giả thiết \(\Rightarrow4m^2+4n^2+8p^2+6mn+2mp+4np=3\)

\(\Leftrightarrow3\left(m+n+p\right)^2+\left(m-2p\right)^2+\left(n-p\right)^2=3\)

\(\Rightarrow\left(m+n+p\right)^2\le1\Rightarrow-1\le m+n+p\le1\))

Em thấy cách giải nhìn rất đơn giản nhưng thực sự để nghĩ ra cách nhân, cách tách là điều không dễ. Em không biết để làm dạng này là phải đoán, phải thử cách tách hay có mẹo nào để biết tách không ạ, để nếu như đi thi gặp dạng này có thể làm nhanh. Mong mọi người có thể giúp em.

8
28 tháng 3 2022

bạn không biết làm thì đừng bình luận vào đây

28 tháng 3 2022

hỏi giáo sư nha bạn

a:

ΔOBC cân tại O

mà OI là trung tuyến

nên OI vuông góc BC

góc CMO+góc CIO=180 độ

=>CIOM nội tiếp

21 tháng 3 2021

Gọi số học sinh của lớp 9A là x (học sinh), số học sinh lớp 9B là y (học sinh) (ĐK: x,yNx,y∈N∗)

Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển) và số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển)

Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) và số sách tham khảo mà lớp 9A ủng hộ là 4y (quyển)

Từ đó ta có:

Số sách giáo khoa cả hai lớp đã ủng hộ là 6x+5y6x+5y (quyển)

Số sách tham khảo cả hia lớp đã ủng hộ là 3x+4y3x+4y (quyển)

Vì cả hai lớp ủng hộ 738 quyển nên ta có phương trình6x+5y+3x+4y=9x+9y=738(1)6x+5y+3x+4y=9x+9y=738(1)

Và số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166 quyển nên ta có phương trình (6x+5y)(3x+4y)=3x+y=166(2)(6x+5y)−(3x+4y)=3x+y=166(2)

Từ (1) và (2) ta có hệ phương trình 

{9x+9y=7383x+y=166{x+y=823x+y=166{2x=84y=82x{x=42(tm)y=40(tm){9x+9y=7383x+y=166⇔{x+y=823x+y=166⇔{2x=84y=82−x⇔{x=42(tm)y=40(tm)

Vậy số học sinh của lớp 9A là 42 học sinh, số học sinh lớp 9B là 40 học sinh.

Gọi số học sinh của lớp 9A,9C9A,9C lần lượt là x,yx,y ( học sinh ) (ĐK:x,y>0(ĐK:x,y>0

Theo bài ra ta có :

{S sách giáo khoa mà lp 9A ng h là 6x (quyn)S sách tham kho mà lp 9A ng h là 3x (quyn){Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển)Số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển)

{S sách giáo khoa mà lp 9B ng h là 5y (quyn) S sách tham kho mà lp 9C ng h là 4y (quyn){Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) Số sách tham khảo mà lớp 9C ủng hộ là 4y (quyển)

 {Tng s sách giáo khoa c 2 lp ng h là : 6x+5y (quyn)Tng s sách tham kho c 2 lp ng h là : 3x+4y (quyn){Tổng số sách giáo khoa cả 2 lớp ủng hộ là : 6x+5y (quyển)Tổng số sách tham khảo cả 2 lớp ủng hộ là : 3x+4y (quyển)

+)+) Cả 22 lớp ủng hộ thư viện 738738 quyển sách nên ta có phương trình.

6x+5y+3x+4y=7386x+5y+3x+4y=738

9x+9y=738⇔9x+9y=738

x+y=82⇔x+y=82 (1)(1)

+)+) Số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166166 quyển nên ta có phương trình.

(6x+5y)(3x+4y)=166(6x+5y)-(3x+4y)=166

3x+y=166⇔3x+y=166 (2)(2)

Từ (1);(2)(1);(2)⇒  {x+y=823x+y=166{x+y=823x+y=166

{3x+3y=246(3)3x+y=166(4){3x+3y=246(3)3x+y=166(4)

Lấy (3)(4)(3)-(4) ta được : 3x+3y(3x+y)=2461663x+3y-(3x+y)=246-166

2y=80⇔2y=80

y=40(TM)⇔y=40(TM)

(3)x=42(TM)(3)⇒x=42(TM)

Vậy: Số học sinh của lớp 9A9A là 4242 hs

        Số học sinh của lớp 9C9C là 4040 hs

a: Khi x=2 thì (1) sẽ là:

4-2(m+2)+m+1=0

=>m+5-2m-4=0

=>1-m=0

=>m=1

x1+x2=m+1=3

=>x2=3-2=1

b: Δ=(m+2)^2-4(m+1)

=m^2+4m+4-4m-4=m^2>=0

=>Phương trình luôn có hai nghiệm

P=(x1+x2)^2-4x1x1+3x1x2

=(x1+x2)^2-x1x2

=(m+2)^2-m-1

=m^2+4m+4-m-1

=m^2+3m+3

=(m+3/2)^2+3/4>=3/4

Dấu = xảy ra khi m=-3/2

Bài 14:

a)

Sửa đề: \(AE\cdot AB=AD\cdot AC\)

Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(AE\cdot AB=AD\cdot AC\)(đpcm)

b) Ta có: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADB vuông tại D có 

\(\cos\widehat{A}=\dfrac{AD}{AB}\)

Xét ΔAED và ΔACB có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔAED∼ΔACB(c-g-c)

Suy ra: \(\dfrac{AD}{AB}=\dfrac{ED}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AD}{AB}\cdot BC=DE\)

\(\Leftrightarrow DE=BC\cdot\cos\widehat{A}\)(đpcm)

c) Ta có: \(DE=BC\cdot\cos\widehat{A}\)(cmt)

nên \(DE=BC\cdot\cos60^0=\dfrac{1}{2}BC\)(1)

Ta có: ΔEBC vuông tại E(gt)

mà EM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(EM=\dfrac{1}{2}BC\)(2)

Ta có: ΔDBC vuông tại D(gt)

mà DM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(DM=\dfrac{1}{2}BC\)(3)

Từ (1), (2) và (3) suy ra ME=MD=DE

hay ΔMDE đều(đpcm)

1 tháng 7 2021

Dạ em cảm ơn ạ!